openicl_eval.py 6.38 KB
Newer Older
Leymore's avatar
Leymore committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import argparse
import os.path as osp
import time
from typing import Optional

import mmengine
from mmengine.config import Config, ConfigDict
from mmengine.utils import mkdir_or_exist

from opencompass.registry import (ICL_EVALUATORS, MODELS, TASKS,
                                  TEXT_POSTPROCESSORS)
from opencompass.tasks.base import BaseTask
from opencompass.utils import (build_dataset_from_cfg, get_infer_output_path,
                               get_logger, task_abbr_from_cfg)


@TASKS.register_module(force=(__name__ == '__main__'))  # A hack for script run
class OpenICLEvalTask(BaseTask):
    """OpenICL Evaluation Task.

    This task is used to evaluate the metric between predictions and
    references.
    """

    name_prefix = 'OpenICLEval'
    log_subdir = 'logs/eval'
    output_subdir = 'results'

    def __init__(self, cfg: ConfigDict):
        super().__init__(cfg)
        self.num_gpus = 0
        self.logger = get_logger()

    def get_command_template(self):
        return 'python3 {SCRIPT_PATH} {CFG_PATH}'

    def run(self):
        for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs):
            for dataset_cfg in dataset_cfgs:
                self.model_cfg = model_cfg
                self.dataset_cfg = dataset_cfg

                # Load Dataset
                self.eval_cfg = self.dataset_cfg.get('eval_cfg')
                self.output_column = dataset_cfg['reader_cfg']['output_column']

                out_path = get_infer_output_path(
                    self.model_cfg, self.dataset_cfg,
                    osp.join(self.work_dir, 'results'))
                if osp.exists(out_path):
                    continue
                self._score()

    def _score(self):
        test_set = build_dataset_from_cfg(self.dataset_cfg).test
        # Postprocess dataset if necessary
        if 'dataset_postprocessor' in self.eval_cfg:
            TEXT_POSTPROCESSORS.get(
                self.eval_cfg['dataset_postprocessor']['type'])

            def postprocess(sample):
                s = sample[self.output_column]
                proc = TEXT_POSTPROCESSORS.get(
                    self.eval_cfg['dataset_postprocessor']['type'])
                sample[self.output_column] = proc(s)
                return sample

            test_set = test_set.map(postprocess)

        # Load predictions
        filename = get_infer_output_path(
            self.model_cfg, self.dataset_cfg,
            osp.join(self.work_dir, 'predictions'))
        # in case the prediction is partial
        root, ext = osp.splitext(filename)
        partial_filename = root + '_0' + ext

        if not osp.exists(osp.realpath(filename)) and not osp.exists(
                osp.realpath(partial_filename)):
            result = {'error': 'No predictions found.'}
        else:
            if osp.exists(osp.realpath(filename)):
                preds = mmengine.load(filename)
                pred_strs = [
                    preds[str(i)]['prediction'] for i in range(len(preds))
                ]
            else:
                filename = partial_filename
                pred_strs = []
                i = 1
                while osp.exists(osp.realpath(filename)):
                    preds = mmengine.load(filename)
                    filename = root + f'_{i}' + ext
                    i += 1
                    pred_strs += [
                        preds[str(i)]['prediction'] for i in range(len(preds))
                    ]

            if ('pred_role' in self.eval_cfg
                    and 'meta_template' in self.model_cfg
                    and not MODELS.get(self.model_cfg['type']).is_api):
                # Create a prompt template for role config parsing
                from opencompass.models.base import LMTemplateParser
                parser = LMTemplateParser(self.model_cfg['meta_template'])
                role = parser.roles[self.eval_cfg['pred_role']]
                pred_strs = [
                    self._extract_role_pred(pred, role.get('begin', None),
                                            role.get('end', None))
                    for pred in pred_strs
                ]

            # Postprocess predictions if necessary
            if 'pred_postprocessor' in self.eval_cfg:
                proc = TEXT_POSTPROCESSORS.get(
                    self.eval_cfg['pred_postprocessor']['type'])
                pred_strs = [proc(s) for s in pred_strs]

            icl_evaluator = ICL_EVALUATORS.build(self.eval_cfg['evaluator'])
            result = icl_evaluator.score(
                predictions=pred_strs, references=test_set[self.output_column])

        if 'error' in result:
            self.logger.error(
                f'Task {task_abbr_from_cfg(self.cfg)}: {result["error"]}')
            return

        # Save result
        out_path = get_infer_output_path(self.model_cfg, self.dataset_cfg,
                                         osp.join(self.work_dir, 'results'))
        mkdir_or_exist(osp.split(out_path)[0])
        mmengine.dump(result, out_path)

    def _extract_role_pred(self, s: str, begin_str: Optional[str],
                           end_str: Optional[str]) -> str:
        """Extract the role prediction from the full prediction string. The
        role prediction may be the substring between the begin and end string.

        Args:
            s (str): Full prediction string.
            begin_str (str): The beginning string of the role
            end_str (str): The ending string of the role.

        Returns:
            str: The extracted role prediction.
        """
        start = 0
        end = len(s)

        if begin_str:
            begin_idx = s.find(begin_str)
            if begin_idx != -1:
                start = begin_idx + len(begin_str)

        if end_str:
            # TODO: Support calling tokenizer for the accurate eos token
            # and avoid such hardcode
            end_idx = s.find(end_str[:1], start)
            if end_idx != -1:
                end = end_idx

        return s[start:end]


def parse_args():
    parser = argparse.ArgumentParser(description='Score Calculator')
    parser.add_argument('config', help='Config file path')
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()
    cfg = Config.fromfile(args.config)
    start_time = time.time()
    inferencer = OpenICLEvalTask(cfg)
    inferencer.run()
    end_time = time.time()
    get_logger().info(f'time elapsed: {end_time - start_time:.2f}s')