eval_codeagent.py 1.54 KB
Newer Older
1
2
3
4
5
6
7
8
from mmengine.config import read_base
from opencompass.partitioners import SizePartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.models import OpenAI, HuggingFaceCausalLM
from opencompass.models.lagent import CodeAgent

with read_base():
Hubert's avatar
Hubert committed
9
10
    from .datasets.math.math_gen_943d32 import math_datasets
    from .datasets.gsm8k.gsm8k_gen_57b0b1 import gsm8k_datasets
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

datasets = []
datasets += gsm8k_datasets
datasets += math_datasets

models = [
    dict(
        abbr='gpt-3.5-react',
        type=CodeAgent,
        llm=dict(
            type=OpenAI,
            path='gpt-3.5-turbo',
            key='ENV',
            query_per_second=1,
            max_seq_len=4096,
        ),
        batch_size=8),
    dict(
        abbr='WizardCoder-Python-13B-V1.0-react',
        type=CodeAgent,
        llm=dict(
            type=HuggingFaceCausalLM,
            path="WizardLM/WizardCoder-Python-13B-V1.0",
            tokenizer_path='WizardLM/WizardCoder-Python-13B-V1.0',
            tokenizer_kwargs=dict(
                padding_side='left',
                truncation_side='left',
                trust_remote_code=True,
            ),
            max_seq_len=2048,
            model_kwargs=dict(trust_remote_code=True, device_map='auto'),
        ),
        batch_size=8,
        run_cfg=dict(num_gpus=2, num_procs=1)),
]

infer = dict(
    partitioner=dict(type=SizePartitioner, max_task_size=40000),
    runner=dict(
        type=LocalRunner, max_num_workers=16,
        task=dict(type=OpenICLInferTask)),
)