cdme8k_cot2_italy.py 3.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets.cdme.cdme_multi import CDMEDataset
from opencompass.datasets.cdme.cdme_multi import CDMEEvaluator
from opencompass.datasets.cdme.cdme_multi import cdme_postprocess
from opencompass.datasets.cdme.cdme_multi import cdme_dataset_postprocess
import math


def logistic(x, L=100, x0=50, k=0.1):
    return round(L / (1 + math.exp(-k * (x - x0))), 3)


def generate_linear_space(start, end, num):
    if num == 1:
        return [start]
    elif num < 1:
        raise ValueError("num must be at least 1.")
    step = (end - start) / (num - 1)
    return [start + step * i for i in range(num)]


def generate_depth_percents(intervals, interval_type):
    if interval_type == 'linear':
        return generate_linear_space(0, 100, intervals)
    elif interval_type == 'sigmoid':
        linear_space = generate_linear_space(0, 100, intervals)
        return [logistic(x) for x in linear_space]
    else:
        raise ValueError('Unsupported interval type')


cdme_reader_cfg = dict(input_columns=['prompt'], output_column='answer')

cdme_infer_cfg = dict(
    prompt_template=dict(
        type=PromptTemplate,
        template='''{prompt}'''),
    retriever=dict(type=ZeroRetriever),
    inferencer=dict(type=GenInferencer, max_out_len=512))

cdme_eval_cfg = dict(
    evaluator=dict(type=CDMEEvaluator),
    pred_postprocessor=dict(type=cdme_postprocess),
    dataset_postprocessor=dict(type=cdme_dataset_postprocess),
    pred_role='BOT')

context_lengths = list(range(1000, 9000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = "linear"

base_path = './data/CDME'
file_list = ['zh_finance.jsonl']
cdme_datasets = []

needles = ['\n意大利的佛罗伦萨有一家名为"La Giostra"的餐馆,是整个佛罗伦萨中排行第一的餐馆。\n',
           '"La Giostra"餐馆的特色菜肴是松露奶酪通心粉。']
retrieval_question = ("佛罗伦萨中排行第一的餐馆的特色菜肴是?"
                      "请按照'佛罗伦萨中排行第一的餐馆的特色菜肴是______。'的格式回答。")
answer = "佛罗伦萨中排行第一的餐馆的特色菜肴是松露奶酪通心粉。"

keyword = "松露奶酪通心粉"
diff = 25

for original_context_length in context_lengths:
    for depth_percent in generate_depth_percents(
            document_depth_percent_intervals,
            document_depth_percent_interval_type):
        dataset_dict = {
            'abbr': f'CDME_Length{original_context_length}'
            f'Depth{int(depth_percent)}',
            'type': CDMEDataset,
            'path': base_path,
            'length': original_context_length,
            'depth': int(depth_percent),
            'tokenizer_model': 'gpt-4',
            'file_list': file_list,
            'num_repeats_per_file': 10,
            'length_buffer': 200,
            'guide': True,
            'language': 'Chinese',
            'needles': needles,
            'diff': diff,
            'retrieval_question': retrieval_question,
            'answer': answer,
            'keyword': keyword,
            'reader_cfg': cdme_reader_cfg,
            'infer_cfg': cdme_infer_cfg,
            'eval_cfg': cdme_eval_cfg
        }
        cdme_datasets.append(dataset_dict)