eval_internlm_lmdeploy_apiserver.py 1.22 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from mmengine.config import read_base
from opencompass.models.turbomind_api import TurboMindAPIModel

with read_base():
    # choose a list of datasets
    from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
    from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
    from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
    from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
    from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
    from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
    # and output the results in a choosen format
    from .summarizers.medium import summarizer

datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
internlm_chat_20b = dict(
    type=TurboMindAPIModel,
    abbr='internlm-chat-20b-turbomind',
    api_addr='http://0.0.0.0:23333',
    max_out_len=100,
    max_seq_len=2048,
    batch_size=8,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

internlm_chat_7b = dict(
    type=TurboMindAPIModel,
    abbr='internlm-chat-7b-turbomind',
    api_addr='http://0.0.0.0:23333',
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

models = [internlm_chat_20b]