siqa_ppl_e8d8c5.py 1.56 KB
Newer Older
1
2
3
4
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
5
from opencompass.datasets import siqaDataset
6
7
8
9
10
11
12
13
14
15

siqa_reader_cfg = dict(
    input_columns=['context', 'question', 'answerA', 'answerB', 'answerC'],
    output_column='label',
    test_split='validation')

siqa_infer_cfg = dict(
    prompt_template=dict(
        type=PromptTemplate,
        template={
16
            '1':
17
            dict(round=[
18
19
                dict(role='HUMAN', prompt='{context}\nQuestion: {question}\nA. {answerA}\nB. {answerB}\nC. {answerC}'),
                dict(role='BOT', prompt='Answer: A')
20
            ]),
21
            '2':
22
            dict(round=[
23
24
                dict(role='HUMAN', prompt='{context}\nQuestion: {question}\nA. {answerA}\nB. {answerB}\nC. {answerC}'),
                dict(role='BOT', prompt='Answer: B')
25
            ]),
26
            '3':
27
            dict(round=[
28
29
                dict(role='HUMAN', prompt='{context}\nQuestion: {question}\nA. {answerA}\nB. {answerB}\nC. {answerC}'),
                dict(role='BOT', prompt='Answer: C')
30
31
32
33
34
35
36
37
38
            ]),
        }),
    retriever=dict(type=ZeroRetriever),
    inferencer=dict(type=PPLInferencer))

siqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator))

siqa_datasets = [
    dict(
39
        abbr='siqa',
40
41
        type=siqaDataset,
        path='./data/siqa',
42
43
44
45
        reader_cfg=siqa_reader_cfg,
        infer_cfg=siqa_infer_cfg,
        eval_cfg=siqa_eval_cfg)
]