mmlu_gen_23a9a9.py 3.62 KB
Newer Older
gaotongxiao's avatar
gaotongxiao committed
1
2
3
4
5
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MMLUDataset
Leymore's avatar
Leymore committed
6
from opencompass.utils.text_postprocessors import first_capital_postprocess
gaotongxiao's avatar
gaotongxiao committed
7
8
9
10
11

# None of the mmlu dataset in huggingface is correctly parsed, so we use our own dataset reader
# Please download the dataset from https://people.eecs.berkeley.edu/~hendrycks/data.tar

mmlu_reader_cfg = dict(
12
13
    input_columns=['input', 'A', 'B', 'C', 'D'],
    output_column='target',
gaotongxiao's avatar
gaotongxiao committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    train_split='dev')

mmlu_prompt_template = dict(
    type='PromptTemplate',
    template=None,
    ice_token='</E>')

mmlu_infer_cfg = dict(
    ice_template=dict(
        type=PromptTemplate,
        template=dict(round=[
            dict(
                role='HUMAN',
                prompt='{input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: '
            ),
            dict(role='BOT', prompt='{target}\n')
        ])),
    prompt_template=mmlu_prompt_template,
32
33
    retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
    inferencer=dict(type=GenInferencer))
gaotongxiao's avatar
gaotongxiao committed
34
35
36

mmlu_eval_cfg = dict(
    evaluator=dict(type=AccEvaluator),
Leymore's avatar
Leymore committed
37
    pred_postprocessor=dict(type=first_capital_postprocess))
gaotongxiao's avatar
gaotongxiao committed
38
39

mmlu_all_sets = [
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    'college_biology',
    'college_chemistry',
    'college_computer_science',
    'college_mathematics',
    'college_physics',
    'electrical_engineering',
    'astronomy',
    'anatomy',
    'abstract_algebra',
    'machine_learning',
    'clinical_knowledge',
    'global_facts',
    'management',
    'nutrition',
    'marketing',
    'professional_accounting',
    'high_school_geography',
    'international_law',
    'moral_scenarios',
    'computer_security',
    'high_school_microeconomics',
    'professional_law',
    'medical_genetics',
    'professional_psychology',
    'jurisprudence',
    'world_religions',
    'philosophy',
    'virology',
    'high_school_chemistry',
    'public_relations',
    'high_school_macroeconomics',
    'human_sexuality',
    'elementary_mathematics',
    'high_school_physics',
    'high_school_computer_science',
    'high_school_european_history',
    'business_ethics',
    'moral_disputes',
    'high_school_statistics',
    'miscellaneous',
    'formal_logic',
    'high_school_government_and_politics',
    'prehistory',
    'security_studies',
    'high_school_biology',
    'logical_fallacies',
    'high_school_world_history',
    'professional_medicine',
    'high_school_mathematics',
    'college_medicine',
    'high_school_us_history',
    'sociology',
    'econometrics',
    'high_school_psychology',
    'human_aging',
    'us_foreign_policy',
    'conceptual_physics',
gaotongxiao's avatar
gaotongxiao committed
97
98
99
100
101
102
]

mmlu_datasets = []
for _name in mmlu_all_sets:
    mmlu_datasets.append(
        dict(
103
            abbr=f'lukaemon_mmlu_{_name}',
gaotongxiao's avatar
gaotongxiao committed
104
            type=MMLUDataset,
105
            path='./data/mmlu/',
gaotongxiao's avatar
gaotongxiao committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
            name=_name,
            reader_cfg=mmlu_reader_cfg,
            infer_cfg=mmlu_infer_cfg.copy(),
            eval_cfg=mmlu_eval_cfg))

    mmlu_datasets[-1]['infer_cfg'][
        'prompt_template'] = mmlu_prompt_template.copy()
    mmlu_datasets[-1]['infer_cfg']['prompt_template']['template'] = \
        dict(
            begin=[
                dict(role='SYSTEM', fallback_role='HUMAN', prompt=f'The following are multiple choice questions (with answers) about {_name.replace("_", " ")}.'),
                '</E>',
            ],
            round=[
                dict(role='HUMAN', prompt='{input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: '),
            ]
        )

del _name