mmlu_clean_ppl.py 3.34 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccContaminationEvaluator
from opencompass.datasets import MMLUDatasetClean as MMLUDataset

# None of the mmlu dataset in huggingface is correctly parsed, so we use our own dataset reader
# Please download the dataset from https://people.eecs.berkeley.edu/~hendrycks/data.tar

mmlu_reader_cfg = dict(
11
12
    input_columns=['input', 'A', 'B', 'C', 'D'],
    output_column='target',
13
14
15
    train_split='dev')

mmlu_all_sets = [
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    'college_biology',
    'college_chemistry',
    'college_computer_science',
    'college_mathematics',
    'college_physics',
    'electrical_engineering',
    'astronomy',
    'anatomy',
    'abstract_algebra',
    'machine_learning',
    'clinical_knowledge',
    'global_facts',
    'management',
    'nutrition',
    'marketing',
    'professional_accounting',
    'high_school_geography',
    'international_law',
    'moral_scenarios',
    'computer_security',
    'high_school_microeconomics',
    'professional_law',
    'medical_genetics',
    'professional_psychology',
    'jurisprudence',
    'world_religions',
    'philosophy',
    'virology',
    'high_school_chemistry',
    'public_relations',
    'high_school_macroeconomics',
    'human_sexuality',
    'elementary_mathematics',
    'high_school_physics',
    'high_school_computer_science',
    'high_school_european_history',
    'business_ethics',
    'moral_disputes',
    'high_school_statistics',
    'miscellaneous',
    'formal_logic',
    'high_school_government_and_politics',
    'prehistory',
    'security_studies',
    'high_school_biology',
    'logical_fallacies',
    'high_school_world_history',
    'professional_medicine',
    'high_school_mathematics',
    'college_medicine',
    'high_school_us_history',
    'sociology',
    'econometrics',
    'high_school_psychology',
    'human_aging',
    'us_foreign_policy',
    'conceptual_physics',
73
74
75
76
77
78
79
80
81
82
]

mmlu_datasets = []
for _name in mmlu_all_sets:
    _hint = f'The following are multiple choice questions (with answers) about  {_name.replace("_", " ")}.\n\n'
    mmlu_infer_cfg = dict(
        ice_template=dict(
            type=PromptTemplate,
            template={
                opt:
83
84
                f'{{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: {opt}\n'
                for opt in ['A', 'B', 'C', 'D']
85
86
87
88
89
90
            },
        ),
        prompt_template=dict(
            type=PromptTemplate,
            template={
                opt:
91
92
                f'{_hint}</E>{{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: {opt}'
                for opt in ['A', 'B', 'C', 'D']
93
            },
94
            ice_token='</E>',
95
96
97
98
99
100
101
102
103
104
        ),
        retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
        inferencer=dict(type=PPLInferencer),
    )

    mmlu_eval_cfg = dict(evaluator=dict(type=AccContaminationEvaluator),
                         analyze_contamination=True)

    mmlu_datasets.append(
        dict(
105
            abbr=f'lukaemon_mmlu_{_name}',
106
            type=MMLUDataset,
107
            path='./data/mmlu/',
108
109
110
111
112
113
114
            name=_name,
            reader_cfg=mmlu_reader_cfg,
            infer_cfg=mmlu_infer_cfg,
            eval_cfg=mmlu_eval_cfg,
        ))

del _name, _hint