anli_ppl_1d290e.py 1.76 KB
Newer Older
1
2
3
4
5
6
7
8
9
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import AnliDataset

anli_datasets = []
for _split in ['R1', 'R2', 'R3']:
    anli_reader_cfg = dict(
10
11
        input_columns=['context', 'hypothesis'],
        output_column='label',
12
13
14
15
16
17
    )

    anli_infer_cfg = dict(
        prompt_template=dict(
            type=PromptTemplate,
            template={
18
                'A':
19
                dict(round=[
20
21
                    dict(role='HUMAN', prompt='{context}\n{hypothesis}\What is the relation between the two sentences?'),
                    dict(role='BOT', prompt='Contradiction'),
22
                ]),
23
                'B':
24
                dict(round=[
25
26
                    dict(role='HUMAN', prompt='{context}\n{hypothesis}\What is the relation between the two sentences?'),
                    dict(role='BOT', prompt='Entailment'),
27
                ]),
28
                'C':
29
                dict(round=[
30
31
                    dict(role='HUMAN', prompt='{context}\n{hypothesis}\What is the relation between the two sentences?'),
                    dict(role='BOT', prompt='Neutral'),
32
33
34
35
36
37
38
39
40
41
42
43
                ]),
            },
        ),
        retriever=dict(type=ZeroRetriever),
        inferencer=dict(type=PPLInferencer),
    )

    anli_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )

    anli_datasets.append(
        dict(
            type=AnliDataset,
44
45
            abbr=f'anli-{_split}',
            path=f'data/anli/anli_v1.0/{_split}/dev.jsonl',
46
47
48
49
50
            reader_cfg=anli_reader_cfg,
            infer_cfg=anli_infer_cfg,
            eval_cfg=anli_eval_cfg,
        )
    )