medbench_gen_0b4fff.py 4.8 KB
Newer Older
Xiaoming Shi's avatar
Xiaoming Shi committed
1
2
3
4
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
Xiaoming Shi's avatar
Xiaoming Shi committed
5
from opencompass.datasets import MedBenchDataset, MedBenchEvaluator, MedBenchEvaluator_Cloze, MedBenchEvaluator_CMeEE, MedBenchEvaluator_CMeIE, MedBenchEvaluator_CHIP_CDEE, MedBenchEvaluator_CHIP_CDN, MedBenchEvaluator_CHIP_CTC, MedBenchEvaluator_NLG, MedBenchEvaluator_TF, MedBenchEvaluator_DBMHG, MedBenchEvaluator_SMDoc, MedBenchEvaluator_IMCS_V2_MRG
Xiaoming Shi's avatar
Xiaoming Shi committed
6
7
8
9
10
from opencompass.utils.text_postprocessors import first_capital_postprocess

medbench_reader_cfg = dict(
    input_columns=['problem_input'], output_column='label')

Xiaoming Shi's avatar
Xiaoming Shi committed
11
medbench_multiple_choices_sets = ['Med-Exam', 'DDx-basic', 'DDx-advanced', 'MedSafety'] # 选择题,用acc判断
Xiaoming Shi's avatar
Xiaoming Shi committed
12

13
medbench_qa_sets = ['MedHC', 'MedMC', 'MedDG', 'MedSpeQA', 'MedTreat', 'CMB-Clin'] # 开放式QA,有标答
Xiaoming Shi's avatar
Xiaoming Shi committed
14

15
medbench_cloze_sets = ['MedHG'] # 限定域QA,有标答
Xiaoming Shi's avatar
Xiaoming Shi committed
16

17
medbench_single_choice_sets = ['DrugCA'] # 正确与否判断,有标答
Xiaoming Shi's avatar
Xiaoming Shi committed
18

19
medbench_ie_sets = ['DBMHG', 'CMeEE', 'CMeIE', 'CHIP-CDEE', 'CHIP-CDN', 'CHIP-CTC', 'SMDoc', 'IMCS-V2-MRG'] # 判断识别的实体是否一致,用F1评价
Xiaoming Shi's avatar
Xiaoming Shi committed
20
21
22

medbench_datasets = []

Xiaoming Shi's avatar
Xiaoming Shi committed
23
for name in medbench_single_choice_sets + medbench_multiple_choices_sets:
Xiaoming Shi's avatar
Xiaoming Shi committed
24
25
26
27
    medbench_infer_cfg = dict(
        prompt_template=dict(
            type=PromptTemplate,
            template=dict(
28
                round=[dict(role='HUMAN', prompt='{problem_input}')])),
Xiaoming Shi's avatar
Xiaoming Shi committed
29
30
31
32
33
        retriever=dict(type=ZeroRetriever
                       ),  # retriver 不起作用,以输入参数为准 (zero-shot / few-shot)
        inferencer=dict(type=GenInferencer))

    medbench_eval_cfg = dict(
34
        evaluator=dict(type=MedBenchEvaluator), pred_role='BOT')
Xiaoming Shi's avatar
Xiaoming Shi committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

    medbench_datasets.append(
        dict(
            type=MedBenchDataset,
            path='./data/MedBench/' + name,
            name=name,
            abbr='medbench-' + name,
            setting_name='zero-shot',
            reader_cfg=medbench_reader_cfg,
            infer_cfg=medbench_infer_cfg.copy(),
            eval_cfg=medbench_eval_cfg.copy()))

for name in medbench_qa_sets:
    medbench_infer_cfg = dict(
        prompt_template=dict(
            type=PromptTemplate,
            template=dict(
52
                round=[dict(role='HUMAN', prompt='{problem_input}')])),
Xiaoming Shi's avatar
Xiaoming Shi committed
53
54
55
56
57
        retriever=dict(type=ZeroRetriever
                       ),  # retriver 不起作用,以输入参数为准 (zero-shot / few-shot)
        inferencer=dict(type=GenInferencer))

    medbench_eval_cfg = dict(
58
        evaluator=dict(type=MedBenchEvaluator_NLG), pred_role='BOT')
Xiaoming Shi's avatar
Xiaoming Shi committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    medbench_datasets.append(
        dict(
            type=MedBenchDataset,
            path='./data/MedBench/' + name,
            name=name,
            abbr='medbench-' + name,
            setting_name='zero-shot',
            reader_cfg=medbench_reader_cfg,
            infer_cfg=medbench_infer_cfg.copy(),
            eval_cfg=medbench_eval_cfg.copy()))

for name in medbench_cloze_sets:
    medbench_infer_cfg = dict(
        prompt_template=dict(
            type=PromptTemplate,
            template=dict(
76
                round=[dict(role='HUMAN', prompt='{problem_input}')])),
Xiaoming Shi's avatar
Xiaoming Shi committed
77
78
79
80
81
        retriever=dict(type=ZeroRetriever
                       ),  # retriver 不起作用,以输入参数为准 (zero-shot / few-shot)
        inferencer=dict(type=GenInferencer))

    medbench_eval_cfg = dict(
82
        evaluator=dict(type=MedBenchEvaluator_Cloze), pred_role='BOT')
Xiaoming Shi's avatar
Xiaoming Shi committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

    medbench_datasets.append(
        dict(
            type=MedBenchDataset,
            path='./data/MedBench/' + name,
            name=name,
            abbr='medbench-' + name,
            setting_name='zero-shot',
            reader_cfg=medbench_reader_cfg,
            infer_cfg=medbench_infer_cfg.copy(),
            eval_cfg=medbench_eval_cfg.copy()))

for name in medbench_ie_sets:
    medbench_infer_cfg = dict(
        prompt_template=dict(
            type=PromptTemplate,
            template=dict(
100
                round=[dict(role='HUMAN', prompt='{problem_input}')])),
Xiaoming Shi's avatar
Xiaoming Shi committed
101
102
103
104
105
        retriever=dict(type=ZeroRetriever
                       ),  # retriver 不起作用,以输入参数为准 (zero-shot / few-shot)
        inferencer=dict(type=GenInferencer))

    medbench_eval_cfg = dict(
106
        evaluator=dict(type=eval('MedBenchEvaluator_'+name.replace('-', '_'))), pred_role='BOT')
Xiaoming Shi's avatar
Xiaoming Shi committed
107
108
109
110
111
112
113
114
115
116
117
118

    medbench_datasets.append(
        dict(
            type=MedBenchDataset,
            path='./data/MedBench/' + name,
            name=name,
            abbr='medbench-' + name,
            setting_name='zero-shot',
            reader_cfg=medbench_reader_cfg,
            infer_cfg=medbench_infer_cfg.copy(),
            eval_cfg=medbench_eval_cfg.copy()))

119
del name, medbench_infer_cfg, medbench_eval_cfg