CLUE_afqmc_ppl_6507d7.py 1.72 KB
Newer Older
Leymore's avatar
Leymore committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset

afqmc_reader_cfg = dict(
    input_columns=['sentence1', 'sentence2'],
    output_column='label',
    test_split='train')

afqmc_infer_cfg = dict(
    prompt_template=dict(
        type=PromptTemplate,
        template={
            0:
            dict(round=[
                dict(
19
                    role='HUMAN',
Leymore's avatar
Leymore committed
20
                    prompt=
21
                    '语句一:“{sentence1}”\n语句二:“{sentence2}”\n语句一与语句二是关于蚂蚁金融产品的疑问,两者所询问的内容是否完全一致?'
Leymore's avatar
Leymore committed
22
                ),
23
                dict(role='BOT', prompt='不完全一致')
Leymore's avatar
Leymore committed
24
25
26
27
            ]),
            1:
            dict(round=[
                dict(
28
                    role='HUMAN',
Leymore's avatar
Leymore committed
29
                    prompt=
30
                    '语句一:“{sentence1}”\n语句二:“{sentence2}”\n语句一与语句二是关于蚂蚁金融产品的疑问,两者所询问的内容是否完全一致?'
Leymore's avatar
Leymore committed
31
                ),
32
                dict(role='BOT', prompt='完全一致')
Leymore's avatar
Leymore committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
            ]),
        }),
    retriever=dict(type=ZeroRetriever),
    inferencer=dict(type=PPLInferencer))

afqmc_eval_cfg = dict(evaluator=dict(type=AccEvaluator))

afqmc_datasets = [
    dict(
        type=HFDataset,
        abbr='afqmc-dev',
        path='json',
        data_files='./data/CLUE/AFQMC/dev.json',
        split='train',
        reader_cfg=afqmc_reader_cfg,
        infer_cfg=afqmc_infer_cfg,
        eval_cfg=afqmc_eval_cfg),
]