mmlu_gen_23a9a9.py 3.62 KB
Newer Older
gaotongxiao's avatar
gaotongxiao committed
1
2
3
4
5
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MMLUDataset
Leymore's avatar
Leymore committed
6
from opencompass.utils.text_postprocessors import first_capital_postprocess
gaotongxiao's avatar
gaotongxiao committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

# None of the mmlu dataset in huggingface is correctly parsed, so we use our own dataset reader
# Please download the dataset from https://people.eecs.berkeley.edu/~hendrycks/data.tar

mmlu_reader_cfg = dict(
    input_columns=["input", "A", "B", "C", "D"],
    output_column="target",
    train_split='dev')

mmlu_prompt_template = dict(
    type='PromptTemplate',
    template=None,
    ice_token='</E>')

mmlu_infer_cfg = dict(
    ice_template=dict(
        type=PromptTemplate,
        template=dict(round=[
            dict(
                role='HUMAN',
                prompt='{input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: '
            ),
            dict(role='BOT', prompt='{target}\n')
        ])),
    prompt_template=mmlu_prompt_template,
    retriever=dict(type=FixKRetriever),
    inferencer=dict(type=GenInferencer, fix_id_list=[0, 1, 2, 3, 4]))

mmlu_eval_cfg = dict(
    evaluator=dict(type=AccEvaluator),
Leymore's avatar
Leymore committed
37
    pred_postprocessor=dict(type=first_capital_postprocess))
gaotongxiao's avatar
gaotongxiao committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

mmlu_all_sets = [
    "college_biology",
    "college_chemistry",
    "college_computer_science",
    "college_mathematics",
    "college_physics",
    "electrical_engineering",
    "astronomy",
    "anatomy",
    "abstract_algebra",
    "machine_learning",
    "clinical_knowledge",
    "global_facts",
    "management",
    "nutrition",
    "marketing",
    "professional_accounting",
    "high_school_geography",
    "international_law",
    "moral_scenarios",
    "computer_security",
    "high_school_microeconomics",
    "professional_law",
    "medical_genetics",
    "professional_psychology",
    "jurisprudence",
    "world_religions",
    "philosophy",
    "virology",
    "high_school_chemistry",
    "public_relations",
    "high_school_macroeconomics",
    "human_sexuality",
    "elementary_mathematics",
    "high_school_physics",
    "high_school_computer_science",
    "high_school_european_history",
    "business_ethics",
    "moral_disputes",
    "high_school_statistics",
    "miscellaneous",
    "formal_logic",
    "high_school_government_and_politics",
    "prehistory",
    "security_studies",
    "high_school_biology",
    "logical_fallacies",
    "high_school_world_history",
    "professional_medicine",
    "high_school_mathematics",
    "college_medicine",
    "high_school_us_history",
    "sociology",
    "econometrics",
    "high_school_psychology",
    "human_aging",
    "us_foreign_policy",
    "conceptual_physics",
]

mmlu_datasets = []
for _name in mmlu_all_sets:
    mmlu_datasets.append(
        dict(
            abbr=f"lukaemon_mmlu_{_name}",
            type=MMLUDataset,
            path="./data/mmlu/",
            name=_name,
            reader_cfg=mmlu_reader_cfg,
            infer_cfg=mmlu_infer_cfg.copy(),
            eval_cfg=mmlu_eval_cfg))

    mmlu_datasets[-1]['infer_cfg'][
        'prompt_template'] = mmlu_prompt_template.copy()
    mmlu_datasets[-1]['infer_cfg']['prompt_template']['template'] = \
        dict(
            begin=[
                dict(role='SYSTEM', fallback_role='HUMAN', prompt=f'The following are multiple choice questions (with answers) about {_name.replace("_", " ")}.'),
                '</E>',
            ],
            round=[
                dict(role='HUMAN', prompt='{input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: '),
            ]
        )

del _name