eval_subjective_alignbench.py 2.89 KB
Newer Older
1
2
3
4
5
6
7
8
9
from os import getenv as gv

from mmengine.config import read_base
with read_base():
    from .models.qwen.hf_qwen_7b_chat import models as hf_qwen_7b_chat
    from .models.qwen.hf_qwen_14b_chat import models as hf_qwen_14b_chat
    from .models.chatglm.hf_chatglm3_6b import models as hf_chatglm3_6b
    from .models.baichuan.hf_baichuan2_7b_chat import models as hf_baichuan2_7b
    from .models.hf_internlm.hf_internlm_chat_20b import models as hf_internlm_chat_20b
10
11
12
13
    from .models.judge_llm.auto_j.hf_autoj_eng_13b import models as hf_autoj
    from .models.judge_llm.judgelm.hf_judgelm_33b_v1 import models as hf_judgelm
    from .models.judge_llm.pandalm.hf_pandalm_7b_v1 import models as hf_pandalm
    from .datasets.subjective_alignbench.alignbench_judgeby_critiquellm import subjective_datasets
14
15
16

datasets = [*subjective_datasets]

17
18
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3
from opencompass.models.openai_api import OpenAIAllesAPIN
19
20
21
22
23
24
25
26
from opencompass.partitioners import NaivePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import AlignmentBenchSummarizer

27
28
29
30

# -------------Inferen Stage ----------------------------------------

models = [*hf_baichuan2_7b]#, *hf_chatglm3_6b, *hf_internlm_chat_20b, *hf_qwen_7b_chat, *hf_qwen_14b_chat]
31
32
33
34
35
36
37
38
39
40
41
42

infer = dict(
    partitioner=dict(type=NaivePartitioner),
    runner=dict(
        type=SlurmSequentialRunner,
        partition='llmeval',
        quotatype='auto',
        max_num_workers=256,
        task=dict(type=OpenICLInferTask)),
)


43
44
45
46
# -------------Evalation Stage ----------------------------------------


## ------------- JudgeLLM Configuration
47
48
49
50
51
52
53
54
api_meta_template = dict(
    round=[
        dict(role='HUMAN', api_role='HUMAN'),
        dict(role='BOT', api_role='BOT', generate=True),
    ]
)

judge_model = dict(
55
56
57
58
        abbr='GPT4-Turbo',
        type=OpenAIAllesAPIN, path='gpt-4-1106-preview',
        key='xxxx',  # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
        url='xxxx',
59
        meta_template=api_meta_template,
60
61
62
        query_per_second=16,
        max_out_len=2048,
        max_seq_len=2048,
63
64
        batch_size=8,
        temperature = 0
65
)
66

67
## ------------- Evaluation Configuration
68
69
70
71
72
73
74
eval = dict(
    partitioner=dict(
        type=SubjectiveNaivePartitioner,
        mode='singlescore',
        models = [*hf_baichuan2_7b]
    ),
    runner=dict(
75
76
        type=LocalRunner,
        max_num_workers=2,
77
78
79
80
81
82
83
        task=dict(
            type=SubjectiveEvalTask,
            judge_cfg=judge_model
        )),
)

summarizer = dict(
84
    type=AlignmentBenchSummarizer, judge_type = 'general'
85
86
87
)

work_dir = 'outputs/alignment_bench/'