prompt_viewer.py 8.29 KB
Newer Older
gaotongxiao's avatar
gaotongxiao committed
1
2
3
4
5
6
import argparse
import fnmatch
from typing import Dict

from mmengine.config import Config, ConfigDict

Leymore's avatar
Leymore committed
7
8
from opencompass.openicl.icl_inferencer import (CLPInferencer, GenInferencer,
                                                PPLInferencer)
gaotongxiao's avatar
gaotongxiao committed
9
10
11
12
13
14
15
from opencompass.registry import ICL_PROMPT_TEMPLATES, ICL_RETRIEVERS
from opencompass.utils import (Menu, build_dataset_from_cfg,
                               build_model_from_cfg, dataset_abbr_from_cfg,
                               model_abbr_from_cfg)


def parse_args():
16
17
    parser = argparse.ArgumentParser(
        description='View generated prompts based on datasets (and models)')
gaotongxiao's avatar
gaotongxiao committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    parser.add_argument('config', help='Train config file path')
    parser.add_argument('-n', '--non-interactive', action='store_true')
    parser.add_argument('-a', '--all', action='store_true')
    parser.add_argument('-p',
                        '--pattern',
                        type=str,
                        help='To match the dataset abbr.')
    args = parser.parse_args()
    return args


def parse_model_cfg(model_cfg: ConfigDict) -> Dict[str, ConfigDict]:
    model2cfg = {}
    for model in model_cfg:
        model2cfg[model_abbr_from_cfg(model)] = model
    return model2cfg


def parse_dataset_cfg(dataset_cfg: ConfigDict) -> Dict[str, ConfigDict]:
    dataset2cfg = {}
    for dataset in dataset_cfg:
        dataset2cfg[dataset_abbr_from_cfg(dataset)] = dataset
    return dataset2cfg


def print_prompts(model_cfg, dataset_cfg):
    # TODO: A really dirty method that copies code from PPLInferencer and
    # GenInferencer. In the future, the prompt extraction code should be
    # extracted and generalized as a static method in these Inferencers
    # and reused here.
    if model_cfg:
        max_seq_len = model_cfg.max_seq_len
        if not model_cfg['type'].is_api:
            model_cfg['tokenizer_only'] = True
        model = build_model_from_cfg(model_cfg)
    else:
        max_seq_len = None
        model = None

    infer_cfg = dataset_cfg.get('infer_cfg')

    fix_id_list = infer_cfg.inferencer.get('fix_id_list', [])
    dataset = build_dataset_from_cfg(dataset_cfg)

    ice_template = None
    if hasattr(infer_cfg, 'ice_template'):
        ice_template = ICL_PROMPT_TEMPLATES.build(infer_cfg['ice_template'])

    prompt_template = None
    if hasattr(infer_cfg, 'prompt_template'):
        prompt_template = ICL_PROMPT_TEMPLATES.build(
            infer_cfg['prompt_template'])

    infer_cfg['retriever']['dataset'] = dataset
    retriever = ICL_RETRIEVERS.build(infer_cfg['retriever'])

    if fix_id_list:
        ice_idx_list = retriever.retrieve(fix_id_list)
    else:
        ice_idx_list = retriever.retrieve()

    assert infer_cfg.inferencer.type in [PPLInferencer, GenInferencer], \
        'Only PPLInferencer and GenInferencer are supported'

    if infer_cfg.inferencer.type == PPLInferencer:
        labels = retriever.get_labels(ice_template=ice_template,
                                      prompt_template=prompt_template)
        ice = [
            retriever.generate_ice(ice_idx_list[idx],
                                   ice_template=ice_template)
            for idx in range(len(ice_idx_list))
        ]
        print('-' * 100)
        print('ICE Template:')
        print('-' * 100)
        print(ice[0])
        print('-' * 100)
        for label in labels:
            idx = 0
            prompt = retriever.generate_label_prompt(
                idx,
                ice[idx],
                label,
                ice_template=ice_template,
                prompt_template=prompt_template,
                remain_sep=None)
            if max_seq_len is not None:
                prompt_token_num = model.get_token_len_from_template(prompt)
                while len(ice_idx_list[idx]
                          ) > 0 and prompt_token_num > max_seq_len:
                    num_ice = len(ice_idx_list[idx])
                    print(f'Truncating ice {num_ice} -> {num_ice - 1}',
                          f'Number of tokens: {prompt_token_num} -> ...')
                    ice_idx_list[idx] = ice_idx_list[idx][:-1]
                    ice[idx] = retriever.generate_ice(
                        ice_idx_list[idx], ice_template=ice_template)
                    prompt = retriever.generate_label_prompt(
                        idx,
                        ice[idx],
                        label,
                        ice_template=ice_template,
                        prompt_template=prompt_template)
                    prompt_token_num = model.get_token_len_from_template(
                        prompt)
                print(f'Number of tokens: {prompt_token_num}')
            if model is not None:
                prompt = model.parse_template(prompt, mode='ppl')
            print('-' * 100)
            print(f'Label: {label}')
            print('Sample prompt:')
            print('-' * 100)
            print(prompt)
            print('-' * 100)
Leymore's avatar
Leymore committed
131
    elif infer_cfg.inferencer.type in [GenInferencer, CLPInferencer]:
gaotongxiao's avatar
gaotongxiao committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        idx, ice_idx = 0, ice_idx_list[0]
        ice = retriever.generate_ice(ice_idx, ice_template=ice_template)
        prompt = retriever.generate_prompt_for_generate_task(
            idx,
            ice,
            gen_field_replace_token=infer_cfg.inferencer.get(
                'gen_field_replace_token', ''),
            ice_template=ice_template,
            prompt_template=prompt_template)
        if max_seq_len is not None:
            prompt_token_num = model.get_token_len_from_template(prompt)
            while len(ice_idx) > 0 and prompt_token_num > max_seq_len:
                num_ice = len(ice_idx)
                print(f'Truncating ice {num_ice} -> {num_ice - 1}',
                      f'Number of tokens: {prompt_token_num} -> ...')
                ice_idx = ice_idx[:-1]
                ice = retriever.generate_ice(ice_idx,
                                             ice_template=ice_template)
                prompt = retriever.generate_prompt_for_generate_task(
                    idx,
                    ice,
                    gen_field_replace_token=infer_cfg.inferencer.get(
                        'gen_field_replace_token', ''),
                    ice_template=ice_template,
                    prompt_template=prompt_template)
                prompt_token_num = model.get_token_len_from_template(prompt)
            print(f'Number of tokens:  {prompt_token_num}')
        if model is not None:
            prompt = model.parse_template(prompt, mode='gen')
        print('-' * 100)
        print('Sample prompt:')
        print('-' * 100)
        print(prompt)
        print('-' * 100)


def main():
    args = parse_args()
    cfg = Config.fromfile(args.config)
    # cfg.models =
    model2cfg = parse_model_cfg(cfg.models) if 'models' in cfg else {
        'None': None
    }
    if 'datasets' in cfg:
        dataset2cfg = parse_dataset_cfg(cfg.datasets)
    else:
        dataset2cfg = {}
        for key in cfg.keys():
            if key.endswith('_datasets'):
                dataset2cfg.update(parse_dataset_cfg(cfg[key]))

    if args.pattern is not None:
        matches = fnmatch.filter(dataset2cfg, args.pattern)
        if len(matches) == 0:
            raise ValueError(
                'No dataset match the pattern. Please select from: \n' +
                '\n'.join(dataset2cfg.keys()))
        dataset2cfg = {k: dataset2cfg[k] for k in matches}

    if not args.all:
        if not args.non_interactive:
            model, dataset = Menu(
                [list(model2cfg.keys()),
                 list(dataset2cfg.keys())], [
                     f'Please make a selection of {s}:'
                     for s in ['model', 'dataset']
                 ]).run()
        else:
            model = list(model2cfg.keys())[0]
            dataset = list(dataset2cfg.keys())[0]
        model_cfg = model2cfg[model]
        dataset_cfg = dataset2cfg[dataset]
        print_prompts(model_cfg, dataset_cfg)
    else:
        for model_abbr, model_cfg in model2cfg.items():
            for dataset_abbr, dataset_cfg in dataset2cfg.items():
                print('=' * 64, '[BEGIN]', '=' * 64)
                print(f'[MODEL]: {model_abbr}')
                print(f'[DATASET]: {dataset_abbr}')
                print('---')
                print_prompts(model_cfg, dataset_cfg)
                print('=' * 65, '[END]', '=' * 65)
                print()


if __name__ == '__main__':
    main()