leval_narrativeqa_gen_766dd0.py 1.66 KB
Newer Older
Tong Gao's avatar
Tong Gao committed
1
2
3
4
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import EMEvaluator, RougeEvaluator
philipwangOvO's avatar
philipwangOvO committed
5
from opencompass.datasets.leval import LEvalGPTEvaluator, LEvalNarrativeQADataset
Tong Gao's avatar
Tong Gao committed
6
7

LEval_narrativeqa_reader_cfg = dict(
philipwangOvO's avatar
philipwangOvO committed
8
    input_columns=['context', 'question', 'length'],
Tong Gao's avatar
Tong Gao committed
9
10
11
12
13
14
15
16
17
    output_column='answer',
    train_split='test',
    test_split='test'
)

LEval_narrativeqa_infer_cfg = dict(
    prompt_template=dict(
        type=PromptTemplate,
        template=dict(
philipwangOvO's avatar
philipwangOvO committed
18
19
20
            begin=[
                dict(role='SYSTEM', fallback_role='HUMAN', prompt='Now you are given a very long document. Please follow the instruction after this document. These instructions may include summarizing a document, answering questions based on the document, or writing a required paragraph.'),
            ],
Tong Gao's avatar
Tong Gao committed
21
            round=[
philipwangOvO's avatar
philipwangOvO committed
22
                dict(role='HUMAN', prompt='Document is as follows. {context}\nInstruction: {question}\nAnswer this question with {length} words.'),
Tong Gao's avatar
Tong Gao committed
23
24
25
26
27
28
29
                dict(role='BOT', prompt=''),
            ], )),
    retriever=dict(type=ZeroRetriever),
    inferencer=dict(type=GenInferencer, max_out_len=50)
)

LEval_narrativeqa_eval_cfg = dict(
philipwangOvO's avatar
philipwangOvO committed
30
    evaluator=dict(type=RougeEvaluator), 
Tong Gao's avatar
Tong Gao committed
31
32
33
34
35
36
37
38
39
40
41
42
43
    pred_role='BOT'
)

LEval_narrativeqa_datasets = [
    dict(
        type=LEvalNarrativeQADataset,
        abbr='LEval_narrativeqa',
        path='L4NLP/LEval',
        name='narrative_qa',
        reader_cfg=LEval_narrativeqa_reader_cfg,
        infer_cfg=LEval_narrativeqa_infer_cfg,
        eval_cfg=LEval_narrativeqa_eval_cfg)
]