"tasks/vscode:/vscode.git/clone" did not exist on "35a3fa8b7cd26b6022839e4d30e5ca5f21c08dd4"
bbh_gen_6bd693.py 3.42 KB
Newer Older
1
from os.path import exists
gaotongxiao's avatar
gaotongxiao committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BBHDataset, BBHEvaluator

bbh_reader_cfg = dict(input_columns=["input"], output_column="target")

_path_prefix = "./data/BBH"

bbh_multiple_choice_sets = [
    'temporal_sequences',
    'disambiguation_qa',
    'date_understanding',
    'tracking_shuffled_objects_three_objects',
    'penguins_in_a_table',
    'geometric_shapes',
    'snarks',
    'ruin_names',
    'tracking_shuffled_objects_seven_objects',
    'tracking_shuffled_objects_five_objects',
    'logical_deduction_three_objects',
    'hyperbaton',
    'logical_deduction_five_objects',
    'logical_deduction_seven_objects',
    'movie_recommendation',
    'salient_translation_error_detection',
    'reasoning_about_colored_objects',
]
bbh_free_form_sets = [
    'multistep_arithmetic_two',
    'navigate',
    'dyck_languages',
    'word_sorting',
    'sports_understanding',
    'boolean_expressions',
    'object_counting',
    'formal_fallacies',
    'causal_judgement',
    'web_of_lies',
]

bbh_datasets = []
for _name in bbh_multiple_choice_sets:
46
47
48
    _hint = None
    if exists(f"{_path_prefix}/lib_prompt/{_name}.txt"):
        _hint = open(f"{_path_prefix}/lib_prompt/{_name}.txt", 'r').read()
gaotongxiao's avatar
gaotongxiao committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    bbh_infer_cfg = dict(
        prompt_template=dict(
            type=PromptTemplate,
            template=dict(round=[
                dict(
                    role="HUMAN",
                    prompt=
                    f"Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: Let's think step by step."
                )
            ])),
        retriever=dict(type=ZeroRetriever),
        inferencer=dict(type=GenInferencer, max_out_len=512))
    bbh_eval_cfg = dict(
        evaluator=dict(type=AccEvaluator),
        pred_role="BOT",
        pred_postprocessor=dict(type='bbh-mcq'),
        dataset_postprocessor=dict(type='bbh-mcq'))

    bbh_datasets.append(
        dict(
            type=BBHDataset,
            path=f"{_path_prefix}/data",
            name=_name,
            abbr='bbh-' + _name,
            reader_cfg=bbh_reader_cfg,
            infer_cfg=bbh_infer_cfg.copy(),
            eval_cfg=bbh_eval_cfg.copy()))

for _name in bbh_free_form_sets:
78
79
80
    _hint = None
    if exists(f"{_path_prefix}/lib_prompt/{_name}.txt"):
        _hint = open(f"{_path_prefix}/lib_prompt/{_name}.txt", 'r').read()
gaotongxiao's avatar
gaotongxiao committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    bbh_infer_cfg = dict(
        prompt_template=dict(
            type=PromptTemplate,
            template=dict(round=[
                dict(
                    role="HUMAN",
                    prompt=
                    f"Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: Let's think step by step."
                )
            ])),
        retriever=dict(type=ZeroRetriever),
        inferencer=dict(type=GenInferencer, max_out_len=512))
    bbh_eval_cfg = dict(evaluator=dict(type=BBHEvaluator), pred_role="BOT")

    bbh_datasets.append(
        dict(
            type=BBHDataset,
            path=f"{_path_prefix}/data",
            name=_name,
            abbr='bbh-' + _name,
            reader_cfg=bbh_reader_cfg,
            infer_cfg=bbh_infer_cfg.copy(),
            eval_cfg=bbh_eval_cfg.copy()))

del _name, _hint, _path_prefix