eval_subjective_judge_pandalm.py 2.71 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from mmengine.config import read_base
with read_base():
    from .models.qwen.hf_qwen_7b_chat import models as hf_qwen_7b_chat
    from .models.qwen.hf_qwen_14b_chat import models as hf_qwen_14b_chat
    from .models.chatglm.hf_chatglm3_6b import models as hf_chatglm3_6b
    from .models.baichuan.hf_baichuan2_7b_chat import models as hf_baichuan2_7b
    from .models.hf_internlm.hf_internlm_chat_20b import models as hf_internlm_chat_20b
    from .datasets.subjective_cmp.alignment_bench import subjective_datasets

datasets = [*subjective_datasets]

from opencompass.models import HuggingFaceCausalLM, HuggingFace, OpenAIAllesAPIN, HuggingFaceChatGLM3
from opencompass.partitioners import NaivePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import AlignmentBenchSummarizer


# -------------Inferen Stage ----------------------------------------

models = [*hf_baichuan2_7b]#, *hf_chatglm3_6b, *hf_internlm_chat_20b, *hf_qwen_7b_chat, *hf_qwen_14b_chat]

infer = dict(
    partitioner=dict(type=NaivePartitioner),
    runner=dict(
        type=SlurmSequentialRunner,
        partition='llmeval',
        quotatype='auto',
        max_num_workers=256,
        task=dict(type=OpenICLInferTask)),
)


# -------------Evalation Stage ----------------------------------------


## ------------- JudgeLLM Configuration
api_meta_template = dict(
    round=[
        dict(role='HUMAN', api_role='HUMAN'),
        dict(role='BOT', api_role='BOT', generate=True),
    ]
)

judge_model = dict(
        type=HuggingFaceCausalLM,
        abbr='pandalm-7b-v1-hf',
        path="WeOpenML/PandaLM-7B-v1",
        tokenizer_path='WeOpenML/PandaLM-7B-v1',
        tokenizer_kwargs=dict(padding_side='left',
                              truncation_side='left',
                              trust_remote_code=True,
                              use_fast=False,),
        max_out_len=512,
        max_seq_len=2048,
        batch_size=8,
        model_kwargs=dict(device_map='auto', trust_remote_code=True),
        run_cfg=dict(num_gpus=1, num_procs=1),
    )

## ------------- Evaluation Configuration
eval = dict(
    partitioner=dict(
        type=SubjectiveNaivePartitioner,
        mode='singlescore',
        models = [*hf_baichuan2_7b]
    ),
    runner=dict(
        type=LocalRunner,
        max_num_workers=2,
        task=dict(
            type=SubjectiveEvalTask,
            judge_cfg=judge_model
        )),
)

summarizer = dict(
    type=AlignmentBenchSummarizer,
)

work_dir = 'outputs/pandalm'