eval_subjective_corev2.py 3.38 KB
Newer Older
1
from mmengine.config import read_base
2

3
with read_base():
bittersweet1999's avatar
bittersweet1999 committed
4
    from .datasets.subjective.subjective_cmp.subjective_corev2 import subjective_datasets
5

6
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
bittersweet1999's avatar
bittersweet1999 committed
7
from opencompass.partitioners import NaivePartitioner, SizePartitioner
8
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
bittersweet1999's avatar
bittersweet1999 committed
9
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
10
11
12
13
14
15
16
17
18
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import Corev2Summarizer

api_meta_template = dict(
    round=[
        dict(role='HUMAN', api_role='HUMAN'),
19
        dict(role='BOT', api_role='BOT', generate=True),
20
21
22
23
24
25
    ],
    reserved_roles=[
        dict(role='SYSTEM', api_role='SYSTEM'),
    ],
)

26
# -------------Inference Stage ----------------------------------------
27

28
29
30
31
32
33
34
# For subjective evaluation, we often set do sample for models
models = [
    dict(
        type=HuggingFaceChatGLM3,
        abbr='chatglm3-6b-hf',
        path='THUDM/chatglm3-6b',
        tokenizer_path='THUDM/chatglm3-6b',
35
36
        model_kwargs=dict(
            device_map='auto',
37
            trust_remote_code=True,
38
39
40
41
42
        ),
        tokenizer_kwargs=dict(
            padding_side='left',
            truncation_side='left',
            trust_remote_code=True,
43
44
45
46
47
        ),
        generation_kwargs=dict(
            do_sample=True,
        ),
        meta_template=api_meta_template,
48
        max_out_len=2048,
49
50
        max_seq_len=4096,
        batch_size=1,
51
52
        run_cfg=dict(num_gpus=1, num_procs=1),
    )
53
]
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
datasets = [*subjective_datasets]

gpt4 = dict(
    abbr='gpt4-turbo',
    type=OpenAI,
    path='gpt-4-1106-preview',
    key='',  # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
    meta_template=api_meta_template,
    query_per_second=1,
    max_out_len=2048,
    max_seq_len=4096,
    batch_size=4,
    retry=20,
    temperature=1,
)  # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions

infer = dict(
    partitioner=dict(type=SizePartitioner, max_task_size=500),
    runner=dict(
        type=SlurmSequentialRunner,
        partition='llm_dev2',
        quotatype='auto',
        max_num_workers=256,
        task=dict(type=OpenICLInferTask),
    ),
)

# -------------Evalation Stage ----------------------------------------

## ------------- JudgeLLM Configuration
judge_model = dict(
    abbr='GPT4-Turbo',
    type=OpenAI,
    path='gpt-4-1106-preview',
    key='',  # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
    meta_template=api_meta_template,
    query_per_second=1,
    max_out_len=1024,
    max_seq_len=4096,
    batch_size=2,
    retry=20,
    temperature=0,
)

## ------------- Evaluation Configuration
100
101
eval = dict(
    partitioner=dict(
102
        type=SubjectiveSizePartitioner, mode='m2n', max_task_size=500, base_models=[gpt4], compare_models=models
103
104
105
    ),
    runner=dict(
        type=SlurmSequentialRunner,
bittersweet1999's avatar
bittersweet1999 committed
106
        partition='llm_dev2',
107
108
        quotatype='auto',
        max_num_workers=256,
109
110
        task=dict(type=SubjectiveEvalTask, judge_cfg=judge_model),
    ),
111
112
)

113
114
115
summarizer = dict(type=Corev2Summarizer, match_method='smart')

work_dir = 'outputs/corev2/'