eval_subjective_mtbench.py 3.38 KB
Newer Older
bittersweet1999's avatar
bittersweet1999 committed
1
from mmengine.config import read_base
2

bittersweet1999's avatar
bittersweet1999 committed
3
4
with read_base():
    from .datasets.subjective.multiround.mtbench_single_judge import subjective_datasets
5
    # from .datasets.subjective.multiround.mtbench_pair_judge import subjective_datasets
bittersweet1999's avatar
bittersweet1999 committed
6
7
8
9
10
11
12
13
14
15
16
17

from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3
from opencompass.models.openai_api import OpenAIAllesAPIN
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import MTBenchSummarizer

18
19
api_meta_template = dict(
    round=[
20
        dict(role='SYSTEM', api_role='SYSTEM'),
21
22
23
24
        dict(role='HUMAN', api_role='HUMAN'),
        dict(role='BOT', api_role='BOT', generate=True),
    ]
)
bittersweet1999's avatar
bittersweet1999 committed
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
    dict(
        type=HuggingFaceChatGLM3,
        abbr='chatglm3-6b-hf',
        path='THUDM/chatglm3-6b',
        tokenizer_path='THUDM/chatglm3-6b',
        model_kwargs=dict(
            device_map='auto',
            trust_remote_code=True,
        ),
        tokenizer_kwargs=dict(
            padding_side='left',
            truncation_side='left',
            trust_remote_code=True,
        ),
        generation_kwargs=dict(
            do_sample=True,
        ),
        meta_template=api_meta_template,
        max_out_len=2048,
        max_seq_len=4096,
        batch_size=1,
        run_cfg=dict(num_gpus=1, num_procs=1),
    )
]

datasets = [*subjective_datasets]
bittersweet1999's avatar
bittersweet1999 committed
55
56

infer = dict(
57
    partitioner=dict(type=SizePartitioner, max_task_size=10000),
bittersweet1999's avatar
bittersweet1999 committed
58
59
    runner=dict(
        type=SlurmSequentialRunner,
60
        partition='llm_dev2',
bittersweet1999's avatar
bittersweet1999 committed
61
62
        quotatype='auto',
        max_num_workers=256,
63
64
        task=dict(type=OpenICLInferTask),
    ),
bittersweet1999's avatar
bittersweet1999 committed
65
66
67
68
69
70
)

# -------------Evalation Stage ----------------------------------------

## ------------- JudgeLLM Configuration
judge_model = dict(
71
72
    abbr='GPT4-Turbo',
    type=OpenAIAllesAPIN,
73
    path='gpt-4-0613', # To compare with the official leaderboard, please use gpt4-0613
74
75
76
77
    key='xxxx',  # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
    url='xxxx',
    meta_template=api_meta_template,
    query_per_second=16,
78
    max_out_len=2048,
79
80
81
    max_seq_len=2048,
    batch_size=8,
    temperature=0,
bittersweet1999's avatar
bittersweet1999 committed
82
83
84
)

## ------------- Evaluation Configuration
85
86
87
88
89
90
91
# ## pair evaluation
# eval = dict(
#     partitioner=dict(
#         type=SubjectiveSizePartitioner, max_task_size=100, mode='m2n', base_models=[gpt4], compare_models=models
#     ),
#     runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=SubjectiveEvalTask, judge_cfg=judge_model)),
# )
bittersweet1999's avatar
bittersweet1999 committed
92

93
# summarizer = dict(type=MTBenchSummarizer, judge_type='pair')
bittersweet1999's avatar
bittersweet1999 committed
94
95
96
97


## single evaluation
eval = dict(
98
    partitioner=dict(type=SubjectiveSizePartitioner, max_task_size=10000, mode='singlescore', models=models),
99
    runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=SubjectiveEvalTask, judge_cfg=judge_model)),
bittersweet1999's avatar
bittersweet1999 committed
100
101
)

102
summarizer = dict(type=MTBenchSummarizer, judge_type='single')
bittersweet1999's avatar
bittersweet1999 committed
103
104

work_dir = 'outputs/mtbench/'