medbench_gen_d44f24.py 5.72 KB
Newer Older
Xiaoming Shi's avatar
Xiaoming Shi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import (
    MedBenchDataset,
    MedBenchEvaluator,
    MedBenchEvaluator_Cloze,
    MedBenchEvaluator_IE,
    MedBenchEvaluator_mcq,
    MedBenchEvaluator_CMeEE,
    MedBenchEvaluator_CMeIE,
    MedBenchEvaluator_CHIP_CDEE,
    MedBenchEvaluator_CHIP_CDN,
    MedBenchEvaluator_CHIP_CTC,
    MedBenchEvaluator_NLG,
    MedBenchEvaluator_TF,
    MedBenchEvaluator_EMR,
)
from opencompass.utils.text_postprocessors import first_capital_postprocess

medbench_reader_cfg = dict(
    input_columns=['problem_input'], output_column='label')

medbench_multiple_choices_sets = ['Health_exam', 'DDx-basic', 'DDx-advanced_pre', 'DDx-advanced_final', 'SafetyBench'] # 选择题,用acc判断

medbench_qa_sets = ['Health_Counseling', 'Medicine_Counseling', 'MedDG', 'MedSpeQA', 'MedTreat', 'CMB-Clin'] # 开放式QA,有标答

medbench_cloze_sets = ['Triage'] # 限定域QA,有标答

medbench_single_choice_sets = ['Medicine_attack'] # 正确与否判断,有标答

medbench_ie_sets = ['EMR', 'CMeEE'] # 判断识别的实体是否一致,用F1评价

#, 'CMeIE', 'CHIP_CDEE', 'CHIP_CDN', 'CHIP_CTC', 'Doc_parsing', 'MRG'

medbench_datasets = []


for name in medbench_single_choice_sets:
    medbench_infer_cfg = dict(
        prompt_template=dict(
            type=PromptTemplate,
            template=dict(
                round=[dict(role="HUMAN", prompt='{problem_input}')])),
        retriever=dict(type=ZeroRetriever
                       ),  # retriver 不起作用,以输入参数为准 (zero-shot / few-shot)
        inferencer=dict(type=GenInferencer))

    medbench_eval_cfg = dict(
        evaluator=dict(type=MedBenchEvaluator_TF), pred_role="BOT")

    medbench_datasets.append(
        dict(
            type=MedBenchDataset,
            path='./data/MedBench/' + name,
            name=name,
            abbr='medbench-' + name,
            setting_name='zero-shot',
            reader_cfg=medbench_reader_cfg,
            infer_cfg=medbench_infer_cfg.copy(),
            eval_cfg=medbench_eval_cfg.copy()))

for name in medbench_multiple_choices_sets:
    medbench_infer_cfg = dict(
        prompt_template=dict(
            type=PromptTemplate,
            template=dict(
                round=[dict(role="HUMAN", prompt='{problem_input}')])),
        retriever=dict(type=ZeroRetriever
                       ),  # retriver 不起作用,以输入参数为准 (zero-shot / few-shot)
        inferencer=dict(type=GenInferencer))

    medbench_eval_cfg = dict(
        evaluator=dict(type=MedBenchEvaluator), pred_role="BOT")

    medbench_datasets.append(
        dict(
            type=MedBenchDataset,
            path='./data/MedBench/' + name,
            name=name,
            abbr='medbench-' + name,
            setting_name='zero-shot',
            reader_cfg=medbench_reader_cfg,
            infer_cfg=medbench_infer_cfg.copy(),
            eval_cfg=medbench_eval_cfg.copy()))

for name in medbench_qa_sets:
    medbench_infer_cfg = dict(
        prompt_template=dict(
            type=PromptTemplate,
            template=dict(
                round=[dict(role="HUMAN", prompt='{problem_input}')])),
        retriever=dict(type=ZeroRetriever
                       ),  # retriver 不起作用,以输入参数为准 (zero-shot / few-shot)
        inferencer=dict(type=GenInferencer))

    medbench_eval_cfg = dict(
        evaluator=dict(type=MedBenchEvaluator_NLG), pred_role="BOT")

    medbench_datasets.append(
        dict(
            type=MedBenchDataset,
            path='./data/MedBench/' + name,
            name=name,
            abbr='medbench-' + name,
            setting_name='zero-shot',
            reader_cfg=medbench_reader_cfg,
            infer_cfg=medbench_infer_cfg.copy(),
            eval_cfg=medbench_eval_cfg.copy()))

for name in medbench_cloze_sets:
    medbench_infer_cfg = dict(
        prompt_template=dict(
            type=PromptTemplate,
            template=dict(
                round=[dict(role="HUMAN", prompt='{problem_input}')])),
        retriever=dict(type=ZeroRetriever
                       ),  # retriver 不起作用,以输入参数为准 (zero-shot / few-shot)
        inferencer=dict(type=GenInferencer))

    medbench_eval_cfg = dict(
        evaluator=dict(type=MedBenchEvaluator_Cloze), pred_role="BOT")

    medbench_datasets.append(
        dict(
            type=MedBenchDataset,
            path='./data/MedBench/' + name,
            name=name,
            abbr='medbench-' + name,
            setting_name='zero-shot',
            reader_cfg=medbench_reader_cfg,
            infer_cfg=medbench_infer_cfg.copy(),
            eval_cfg=medbench_eval_cfg.copy()))

for name in medbench_ie_sets:
    medbench_infer_cfg = dict(
        prompt_template=dict(
            type=PromptTemplate,
            template=dict(
                round=[dict(role="HUMAN", prompt='{problem_input}')])),
        retriever=dict(type=ZeroRetriever
                       ),  # retriver 不起作用,以输入参数为准 (zero-shot / few-shot)
        inferencer=dict(type=GenInferencer))

    medbench_eval_cfg = dict(
        evaluator=dict(type=eval('MedBenchEvaluator_'+name)), pred_role="BOT")

    medbench_datasets.append(
        dict(
            type=MedBenchDataset,
            path='./data/MedBench/' + name,
            name=name,
            abbr='medbench-' + name,
            setting_name='zero-shot',
            reader_cfg=medbench_reader_cfg,
            infer_cfg=medbench_infer_cfg.copy(),
            eval_cfg=medbench_eval_cfg.copy()))

del name, medbench_infer_cfg, medbench_eval_cfg