eval_internlm_chat_turbomind.py 5.51 KB
Newer Older
1
2
3
4
5
6
7
from mmengine.config import read_base
from opencompass.models.turbomind import TurboMindModel


with read_base():
    # choose a list of datasets
    from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
8
9
10
11
    # from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
    # from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
    # from .datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets
    # from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
12
    from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
13
14
    # from .datasets.race.race_gen_69ee4f import race_datasets
    # from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets
15
16
17
    # and output the results in a choosen format
    from .summarizers.medium import summarizer

18

19
20
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])

21
22
23
24
25
internlm_meta_template = dict(round=[
    dict(role='HUMAN', begin='<|User|>:', end='\n'),
    dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
],
                              eos_token_id=103028)
26

27
llama2_meta_template = dict(
28
    round=[
29
30
        dict(role='HUMAN', begin='[INST] ', end=' [/INST]'),
        dict(role='BOT', generate=True),
31
    ],
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    eos_token_id=2)

qwen_meta_template = dict(round=[
    dict(role='HUMAN', begin='\n<|im_start|>user\n', end='<|im_end|>'),
    dict(role='BOT',
         begin='\n<|im_start|>assistant\n',
         end='<|im_end|>',
         generate=True)
    ])

baichuan2_meta_template = dict(round=[
    dict(role='HUMAN', begin='<reserved_106>'),
    dict(role='BOT', begin='<reserved_107>', generate=True)
    ])
46
47

# config for internlm-chat-7b
48
49
50
internlm_chat_7b = dict(
    type=TurboMindModel,
    abbr='internlm-chat-7b-turbomind',
51
    path='internlm/internlm-chat-7b',
52
53
54
55
56
57
58
59
60
61
62
    max_out_len=100,
    max_seq_len=2048,
    batch_size=32,
    concurrency=32,
    meta_template=internlm_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

internlm_chat_7b_w4 = dict(
    type=TurboMindModel,
    abbr='internlm-chat-7b-w4-turbomind',
63
    path='internlm/internlm-chat-7b-w4',
64
65
66
67
68
69
70
    max_out_len=100,
    max_seq_len=2048,
    batch_size=32,
    concurrency=32,
    meta_template=internlm_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)
71
72

# config for internlm-chat-7b-w4kv8 model
73
74
75
internlm_chat_7b_w4kv8 = dict(
    type=TurboMindModel,
    abbr='internlm-chat-7b-w4kv8-turbomind',
76
    path='internlm/internlm-chat-7b-w4kv8',
77
78
79
80
81
82
83
    max_out_len=100,
    max_seq_len=2048,
    batch_size=32,
    concurrency=32,
    meta_template=internlm_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)
84
85

# config for internlm-chat-20b
86
87
88
internlm_chat_20b = dict(
    type=TurboMindModel,
    abbr='internlm-chat-20b-turbomind',
89
    path='internlm/internlm-chat-20b',
90
91
92
93
94
95
96
    max_out_len=100,
    max_seq_len=2048,
    batch_size=8,
    concurrency=8,
    meta_template=internlm_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)
97
98

# config for internlm-chat-20b-w4 model
99
100
101
internlm_chat_20b_w4 = dict(
    type=TurboMindModel,
    abbr='internlm-chat-20b-w4-turbomind',
102
    path='internlm/internlm-chat-20b-w4',
103
104
105
106
107
108
109
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    concurrency=16,
    meta_template=internlm_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)
110
111

# config for internlm-chat-20b-w4kv8 model
112
113
114
internlm_chat_20b_w4kv8 = dict(
    type=TurboMindModel,
    abbr='internlm-chat-20b-w4kv8-turbomind',
115
    path='internlm/internlm-chat-20b-w4kv8',
116
117
118
119
120
121
122
123
124
125
126
127
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    concurrency=16,
    meta_template=internlm_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

# config for llama2-chat-7b
llama2_chat_7b = dict(
    type=TurboMindModel,
    abbr='llama2-chat-7b-turbomind',
128
    path='meta-llama/Llama-2-7b-chat-hf',
129
130
131
132
133
134
135
136
137
138
139
140
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    concurrency=32,
    meta_template=llama2_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

# config for llama2-chat-13b
llama2_chat_13b = dict(
    type=TurboMindModel,
    abbr='llama2-chat-13b-turbomind',
141
    path='meta-llama/Llama-2-13b-chat-hf',
142
143
144
145
146
147
148
149
150
151
152
153
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    concurrency=16,
    meta_template=llama2_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

# config for llama2-chat-70b
llama2_chat_70b = dict(
    type=TurboMindModel,
    abbr='llama2-chat-70b-turbomind',
154
    path='meta-llama/Llama-2-70b-chat-hf',
155
156
157
158
159
160
161
162
163
164
165
166
    max_out_len=100,
    max_seq_len=2048,
    batch_size=8,
    concurrency=8,
    meta_template=llama2_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

# config for qwen-chat-7b
qwen_chat_7b = dict(
    type=TurboMindModel,
    abbr='qwen-chat-7b-turbomind',
167
    path='Qwen/Qwen-7B-Chat',
168
169
170
171
172
173
174
175
176
177
178
179
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    concurrency=32,
    meta_template=qwen_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

# config for qwen-chat-7b
qwen_chat_14b = dict(
    type=TurboMindModel,
    abbr='qwen-chat-14b-turbomind',
180
    path='Qwen/Qwen-14B-Chat',
181
182
183
184
185
186
187
188
189
190
191
192
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    concurrency=32,
    meta_template=qwen_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

# config for baichuan2-chat-7b
baichuan2_chat_7b = dict(
    type=TurboMindModel,
    abbr='baichuan2-chat-7b-turbomind',
193
    path='baichuan-inc/Baichuan2-7B-Chat',
194
195
196
197
198
199
200
201
202
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    concurrency=32,
    meta_template=baichuan2_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

models = [internlm_chat_20b]