nn.rst 6.89 KB
Newer Older
yuguo's avatar
yuguo committed
1
2
oneflow.nn
===================================
yuguo's avatar
yuguo committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

.. The documentation is referenced from: 
   https://pytorch.org/docs/1.10/nn.html

These are the basic building blocks for graphs:

.. contents:: oneflow.nn
    :depth: 2
    :local:
    :class: this-will-duplicate-information-and-it-is-still-useful-here
    :backlinks: top

.. currentmodule:: oneflow.nn
.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: 

    Parameter


Containers
yuguo's avatar
yuguo committed
25
26
----------------------------------
.. currentmodule:: oneflow.nn
yuguo's avatar
yuguo committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    Module
    Sequential
    ModuleList
    ModuleDict
    ParameterList
    ParameterDict

nn.Module
----------------------------------
.. currentmodule:: oneflow.nn.Module

.. autosummary::
    :toctree: generated
    :nosignatures:

    add_module
    apply
    buffers
    children
    cpu
    cuda
    double
    train
    eval
    extra_repr
    float
    forward
    load_state_dict
    modules
    named_buffers
    named_children
    named_modules
    named_parameters
    parameters
    register_buffer
    register_forward_hook
    register_forward_pre_hook
    register_parameter
    requires_grad_
    state_dict
    to
    zero_grad



Containers

Convolution Layers
----------------------------------
.. currentmodule:: oneflow
.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.Conv1d 
    nn.Conv2d 
    nn.Conv3d
    nn.ConvTranspose1d 
    nn.ConvTranspose2d 
    nn.ConvTranspose3d
    nn.Unfold
    nn.Fold

Pooling Layers
----------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.MaxPool1d 
    nn.MaxPool2d 
    nn.MaxPool3d 
    nn.MaxUnpool1d
    nn.MaxUnpool2d
    nn.MaxUnpool3d
    nn.AdaptiveAvgPool1d 
    nn.AdaptiveAvgPool2d 
    nn.AdaptiveAvgPool3d
    nn.AdaptiveMaxPool1d 
    nn.AdaptiveMaxPool2d 
    nn.AdaptiveMaxPool3d
    nn.AvgPool1d 
    nn.AvgPool2d 
    nn.AvgPool3d

Padding Layers
----------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.ConstantPad1d 
    nn.ConstantPad2d 
    nn.ConstantPad3d
    nn.ReflectionPad1d
    nn.ReflectionPad2d
    nn.ReplicationPad1d
    nn.ReplicationPad2d
    nn.ZeroPad2d

Non-linear Activations (weighted sum, nonlinearity)
----------------------------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.ELU 
    nn.Hardshrink
    nn.Hardsigmoid 
    nn.Hardswish 
    nn.Hardtanh 
    nn.LeakyReLU 
    nn.LogSigmoid 
    nn.PReLU 
    nn.ReLU
    nn.ReLU6 
    nn.SELU 
    nn.CELU 
    nn.GELU 
    nn.QuickGELU 
    nn.SiLU 
    nn.Sigmoid 
    nn.Mish 
    nn.Softplus 
    nn.Softshrink 
    nn.Softsign 
    nn.Tanh 
    nn.Threshold 
    nn.GLU

Non-linear Activations (other)
----------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.Softmax
    nn.LogSoftmax

Normalization Layers
----------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.BatchNorm1d 
    nn.BatchNorm2d 
    nn.BatchNorm3d
    nn.SyncBatchNorm
    nn.FusedBatchNorm1d 
    nn.FusedBatchNorm2d
    nn.FusedBatchNorm3d 
    nn.GroupNorm 
    nn.InstanceNorm1d 
    nn.InstanceNorm2d 
    nn.InstanceNorm3d 
    nn.LayerNorm
    nn.RMSLayerNorm
    nn.RMSNorm

Recurrent Layers
----------------

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.RNN
    nn.LSTM
    nn.GRU
    nn.RNNCell
    nn.LSTMCell
    nn.GRUCell

Linear Layers
----------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.Identity
    nn.Linear

Dropout Layers
----------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.Dropout
    nn.Dropout1d
    nn.Dropout2d
    nn.Dropout3d

Sparse Layers
----------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.Embedding

Distance Functions
------------------

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.CosineSimilarity
    nn.PairwiseDistance

Loss Functions
----------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.BCELoss 
    nn.BCEWithLogitsLoss 
    nn.CTCLoss 
    nn.CombinedMarginLoss 
    nn.CrossEntropyLoss 
    nn.KLDivLoss 
    nn.L1Loss 
    nn.MSELoss 
    nn.MarginRankingLoss 
    nn.NLLLoss 
    nn.SmoothL1Loss 
    nn.TripletMarginLoss

Vision Layers
----------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.PixelShuffle 
    nn.Upsample 
    nn.UpsamplingBilinear2d 
    nn.UpsamplingNearest2d


DataParallel Layers (multi-GPU, distributed)
--------------------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst
    
    nn.parallel.DistributedDataParallel


Data loading and preprocessing Layers
----------------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:

    nn.COCOReader
    nn.CoinFlip
    nn.CropMirrorNormalize
    nn.OFRecordBytesDecoder
    nn.OFRecordImageDecoder
    nn.OFRecordImageDecoderRandomCrop
    nn.OFRecordRawDecoder
    nn.OFRecordReader

Quantization Aware Training
--------------------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:

    nn.MinMaxObserver
    nn.MovingAverageMinMaxObserver
    nn.FakeQuantization
    nn.QatConv1d
    nn.QatConv2d
    nn.QatConv3d

Utilities
---------

From the ``oneflow.nn.utils`` module
yuguo's avatar
yuguo committed
344
345

.. currentmodule:: oneflow.nn.utils
yuguo's avatar
yuguo committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    clip_grad_norm_
    clip_grad_value_
    weight_norm
    remove_weight_norm

Utility functions in other modules

.. currentmodule:: oneflow
.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.utils.rnn.PackedSequence
    nn.utils.rnn.pack_padded_sequence
    nn.utils.rnn.pad_packed_sequence
    nn.utils.rnn.pad_sequence
    nn.utils.rnn.pack_sequence

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: classtemplate.rst

    nn.Flatten

Quantized Functions
--------------------

Quantization refers to techniques for performing computations and 
storing tensors at lower bitwidths than floating point precision.

.. autosummary::
    :toctree: generated
    :nosignatures:
    :template:

    nn.FakeQuantization
    nn.MinMaxObserver
    nn.MovingAverageMinMaxObserver
    nn.Quantization