1. 15 Feb, 2025 1 commit
  2. 14 Feb, 2025 4 commits
    • Jesse Gross's avatar
      Runner for Ollama engine · ed443a03
      Jesse Gross authored
      This provides integration with the new Ollama engine
      (58245413 next ollama runner (#7913)) and the rest of the Ollama
      infrastructure such as the runner and Ollama server.
      
      In addition, it also builds out the KV cache infrastructure to
      support requirements of how Ollama runs models such as:
       - Parallel processing
       - Memory management for defragmentation and shifting
       - Multi-modal modals
      
      Both old and new engines continue to be supported. By default, only
      the old engine is used. To enable the new engine:
      
      Start the server with the OLLAMA_NEW_ENGINE environment variable set:
      OLLAMA_NEW_ENGINE=1 ./ollama serve
      
      Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
      ./ollama run jessegross/llama3.1
      ed443a03
    • Jesse Gross's avatar
      model: Load tensors behind an interface · d650ad39
      Jesse Gross authored
      Currently, if a model uses an interface for its data structures (as mllama
      does) then the tensor data in the structs implementing that interface will
      not get loaded.
      d650ad39
    • Jesse Gross's avatar
      backend: Support graph computation that does not return an output · 4d4463b2
      Jesse Gross authored
      There are two cases where we may not have an output after computing:
       - Prompt processing where the length of the input exceeds the batch
         size
       - Internal memory management operations such as cache defrag and shift
      4d4463b2
    • Michael Yang's avatar
      next ollama runner (#7913) · 58245413
      Michael Yang authored
      
      
      feat: add new Ollama engine using ggml through cgo
      
      This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.
      
      - `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
      - `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
      - `ml.Tensor` defines the interface for a tensor and tensor operations
      
      This is the first implementation of the new engine. Follow up PRs will implement more features:
      
      - non-greedy sampling (#8410)
      - integration with Ollama and KV caching (#8301)
      - more model support (#9080) with more coming soon
      Co-authored-by: default avatarBruce MacDonald <brucewmacdonald@gmail.com>
      58245413