1. 08 Dec, 2025 1 commit
    • Michael Yang's avatar
      refactor rope · 603ceefa
      Michael Yang authored
      change to a flatter directory structure and group the options with the
      function
      
      update models to call rope in one place
      603ceefa
  2. 04 Dec, 2025 1 commit
    • Jesse Gross's avatar
      ggml: Enable flash attention for vision encoders · 1108d8b3
      Jesse Gross authored
      Although the vision component of multimodal models typically already
      call the optimized nn.Attention, it is converted into non-fused
      operations. That is because the backend-specific fused kernels may
      have requirements, such as padding, and they is performed by the
      cache, which vision encoders don't use.
      
      This implements a fallback path in the backend, softening the
      requirements into optimizations. In turn, this allows flash attention
      to be used for vision encoders, saving a significant amount of VRAM
      and improving performance.
      1108d8b3
  3. 18 Nov, 2025 1 commit
  4. 13 Nov, 2025 1 commit
  5. 06 Nov, 2025 1 commit
  6. 30 Oct, 2025 1 commit
  7. 29 Oct, 2025 2 commits
  8. 01 Oct, 2025 1 commit
    • Daniel Hiltgen's avatar
      Use runners for GPU discovery (#12090) · bc8909fb
      Daniel Hiltgen authored
      This revamps how we discover GPUs in the system by leveraging the Ollama
      runner.  This should eliminate inconsistency between our GPU discovery and the
      runners capabilities at runtime, particularly for cases where we try to filter
      out unsupported GPUs.  Now the runner does that implicitly based on the actual
      device list.  In some cases free VRAM reporting can be unreliable which can
      leaad to scheduling mistakes, so this also includes a patch to leverage more
      reliable VRAM reporting libraries if available.
      
      Automatic workarounds have been removed as only one GPU leveraged this, which
      is now documented. This GPU will soon fall off the support matrix with the next
      ROCm bump.
      
      Additional cleanup of the scheduler and discovery packages can be done in the
      future once we have switched on the new memory management code, and removed
      support for the llama runner.
      bc8909fb
  9. 16 Sep, 2025 2 commits
  10. 15 Sep, 2025 1 commit
  11. 14 Aug, 2025 1 commit
    • Michael Yang's avatar
      update vendored llama.cpp and ggml (#11823) · 1a19df1f
      Michael Yang authored
      * TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
      
      This will be redone once my branch is merged upstream in llama.cpp
      
      * feat: Update all patches
      
      There are a number that are no longer needed at all:
      
      - 0003-embeddings: Embeddings entirely overhauled on master
      - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
          overhauled on master
      - 0019-metal-add-mean-kernel-14267: Merged upstream
      - 0020-CUDA-add-mean-operation-14313: Merged upstream
      
      * feat: Sync llama.cpp and ggml
      
      * fix: Update rsync-filter for all moved/new/removed files
      
      * fix: Add files missing from sync
      
      * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
      
      * fix: Add ggml files missing from sync
      
      * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
      
      * fix: Remove mtmd main cpp files
      
      * fix: Add missing include in sampling_ext.cpp
      
      * fix: Update llama.go to use mtmd instead of clip/llava
      
      * fix: Add patch for mtmd_input_text
      
      * chore: Ignore *.patched in the patch directory
      
      * fix: Fix support for arch-specific ggml-cpu source files with new arrangement
      
      In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
      implementations were split out into a nested tree structure under
      ggml-cpu/arch. This conflicts with standard CGO layout where all
      arch-specific source files are expected to live in the same directory as
      the parent go module and use suffixes based on GOOS and GOARCH. As such,
      there were really two options for getting this to work:
      
      1. Add a patch on top of the GGML sync to rearrange the files to match the
      GO layout convention
      2. Use CGO directives to conditionally include the nested source files in
      the compilation units
      
      This commit does (2) in order to minimize the set of changes needed on top
      of the upstream file layout. To get this to work, there are two key things
      needed:
      
      1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
      the preprocessor directives
      2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
      explicitly include the .c|.cpp files for the given architecture from the
      nested directory
      
      * fix: Use mtmd_helper to correctly load the bitmap for the image
      
      * fix: Apply patch for mtmd_text_input
      
      * fix: Add missing stb to llama.cpp rsync-filter
      
      * fix: Add sync'ed stb vendored header
      
      * fix: Use c++17 and include vendor for go wrapper modules
      
      * fix: Update patch 0015 for upstream implementation of uuid
      
      * feat: Bump to the latest tip of the branch
      
      * fix: Update patches for bump
      
      * feat: Bump back to the cenral repo and point at the latest master
      
      This includes granite 4 and a number of other model architectures!
      
      * fix: Revert changes to ggml export GPU UUID patch
      
      * fix: Add patch for GGML_VERSION and GGML_COMMIT constants
      
      * feat: Sync all patched code
      
      * build: Include cmake/common.cmake in ggml sync
      
      * build: Add top-level include for GNUINstallDirs in CMakeLists.txt
      
      This is used to populate CMAKE_INSTALL_BINDIR
      
      * fix: Add a patch to avoid power throttling API on non-msvc windows builds
      
      * fix: Sync patch changes for ggml-cpu.c
      
      * feat: Bump llama.cpp to 4a4f42
      
      This picks up support for Kimi K2 and PLaMO-2
      
      * feat: Sync llama.cpp
      
      * fix: Handle multi-chunk image encodings from mtmd
      
      * fix: Re-number patches after merge with `main`
      
      * feat: Bump to 41e78c in the makefile
      
      * fix: Fix Solar and argsort/copy patches after bump
      
      * fix: Remove Gemma3n CUDA Graphs patch
      
      It was implemented upstream:
      https://github.com/ggml-org/llama.cpp/pull/14741
      
      * feat: Sync llama.cpp / ggml after latest bump
      
      * build: Remove unnecessary CFLAGS definitions in cpu.go
      
      * fix: Remove unnecessary additions in the rsync-filter
      
      * fix: Remove unused vendored code for chat template parsing
      
      * Revert "fix: Remove Gemma3n CUDA Graphs patch"
      
      This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea.
      
      * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
      
      https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
      
      
      
      * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
      
      * unwind mxfp4 patch
      
      Prepare to bump ggml with their impl for mxfp4
      
      * bump
      
      * fix windows build error
      
      * Convert tensors at load time
      
      Repack the mxfp4 tensors as ggmls kernels expect them to be.
      
      * convert mlp bf16 to f32
      
      * buffer the conversion better
      
      * reshape earlier
      
      * openai swiglu
      
      * add ids
      
      * split qkv, gate_up
      
      * fix nested alt tags
      
      * fast attention
      
      * remove debug messages
      
      * fix lint
      
      * remove redundant test
      
      * remap values only if source/target are different
      
      * add back i32->i32 copy
      
      * refactor cpu quants
      
      * clean up vendor
      
      * update patch instructions
      
      * clean up patches
      
      * remove webgpu
      
      * update mem
      
      * also handle gpt-oss
      
      * revert convert changes
      
      ---------
      Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>
      Co-authored-by: default avatarGabe Goodhart <ghart@us.ibm.com>
      Co-authored-by: default avatarDaniel Hiltgen <daniel@ollama.com>
      1a19df1f
  12. 13 Aug, 2025 1 commit
  13. 05 Aug, 2025 1 commit
    • Michael Yang's avatar
      gpt-oss (#11672) · fa7776fd
      Michael Yang authored
      
      
      * bf16
      
      * tests
      
      * gpt-oss
      
      * enable gptoss for engine
      
      * rough estimate
      
      * convert to mxfp4
      
      * handle safetensors U8
      
      * clamp glu/linear
      
      * update tokenizer
      
      * MXFP4 support
      
      This implements the Open Compute Microscaling (MX) FP4 format
      as a tensor type with backend implementations focusing
      on mulmat and mulmatid on CPU, CUDA, and Metal.
      
      * Unit tests for MXFP4 support
      
      This exercises various operations and shapes on both CPU and GPU (if detected
      on the system)
      
      * cuda graph
      
      * unit test adjustments
      
      * cuda: optimize memory access
      
      Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4
      
      * mac: fix crash on old macos versions
      
      cblas_sgemm is only supported on v13.3 and up, however bf16 is
      only supported on v14+ so we were falling back to ggml-blas and
      crashing on bf16 tensors.  Checking for the function being null
      seems to be the simplest way to condittionally avoid registering the
      backend.
      
      * server: Minimum context length for gptoss
      
      This model requires a minimum context length of 8192 to function
      effectively. Users can set higher values through all normal mechanisms
      but lower values will be silently reset.
      
      * ggml: Multiply by numParallel for gptoss sliding window
      
      When computing the graph size estimate, the context size is already
      multiplied by numParallel so estimates reflect that. However, since
      sliding window models use a smaller, fixed context size, they need
      to manually take numParallel into account.
      
      * gpt-oss integration
      
      includes harmony parser and thinking levels, etc.
      
      * fix sync
      
      * fix tests
      
      * fix lint
      
      ---------
      Co-authored-by: default avatarDaniel Hiltgen <daniel@ollama.com>
      Co-authored-by: default avatarJesse Gross <jesse@ollama.com>
      Co-authored-by: default avatarDevon Rifkin <drifkin@drifkin.net>
      fa7776fd
  14. 20 May, 2025 1 commit
  15. 02 Mar, 2025 1 commit
    • Jesse Gross's avatar
      attention: Remove unnecessary contiguous operations · 854a9195
      Jesse Gross authored
      Prior to performing attention, we need to permute query, key
      and value. Currently we call Contiguous after each of these
      permutations, which is correct but expensive. Avoiding the
      3 calls to Contiguous increases performance by over 20%.
      
      The permutations of query and key do not violate the continuity
      rules for mulmat and the Contiguous call can be simply removed.
      
      Value requires a different permutation and does require Contiguous.
      However, we can use the copy into the cache as a way to perform this
      without further overhead.
      
      To support this and avoid unexpected tensor shapes that are seen by
      models, we need tighter integration between attention, cache
      and backend. Future optimization will also likely need this structure
       - for example, flash attention has special padding requirements in
      the cache and other backends may have their own needs.
      
      This further contains the operations that go into attention so that
      these and other optimizations can be handled transparently. Models
      that have special requirements for attention can still implement
      their own version of it.
      854a9195
  16. 21 Feb, 2025 1 commit
    • Jesse Gross's avatar
      ml: Abstract attention out of model definitions · f53f4198
      Jesse Gross authored
      
      
      There are two benefits to doing this:
       - Provide a library function that models can use, reducing code for
         each model implementation
       - Enables a single place to drop in optimized implementations of
         attention based on the backend or other factors. One is provided for
         GGML.
      
      On CUDA this improves token generation rate by about 3%. It does not
      have a significant effect on Metal.
      Co-authored-by: default avatarDaniel Hiltgen <daniel@ollama.com>
      f53f4198
  17. 14 Feb, 2025 1 commit
    • Michael Yang's avatar
      next ollama runner (#7913) · 58245413
      Michael Yang authored
      
      
      feat: add new Ollama engine using ggml through cgo
      
      This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.
      
      - `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
      - `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
      - `ml.Tensor` defines the interface for a tensor and tensor operations
      
      This is the first implementation of the new engine. Follow up PRs will implement more features:
      
      - non-greedy sampling (#8410)
      - integration with Ollama and KV caching (#8301)
      - more model support (#9080) with more coming soon
      Co-authored-by: default avatarBruce MacDonald <brucewmacdonald@gmail.com>
      58245413