"docs_zh_CN/conf.py" did not exist on "76d9bf1efb052785fea95cb157288a102976a49e"
- 29 Apr, 2025 1 commit
-
-
Devon Rifkin authored
-
- 28 Apr, 2025 1 commit
-
-
Devon Rifkin authored
This reverts commit 424f6486.
-
- 22 Apr, 2025 1 commit
-
-
Devon Rifkin authored
* increase default context length to 4096 We lower the default numParallel from 4 to 2 and use these "savings" to double the default context length from 2048 to 4096. We're memory neutral in cases when we previously would've used numParallel == 4, but we add the following mitigation to handle some cases where we would have previously fallen back to 1x2048 due to low VRAM: we decide between 2048 and 4096 using a runtime check, choosing 2048 if we're on a one GPU system with total VRAM of <= 4 GB. We purposefully don't check the available VRAM because we don't want the context window size to change unexpectedly based on the available VRAM. We plan on making the default even larger, but this is a relatively low-risk change we can make to quickly double it. * fix tests add an explicit context length so they don't get truncated. The code that converts -1 from being a signal for doing a runtime check isn't running as part of these tests. * tweak small gpu message * clarify context length default also make it actually show up in `ollama serve --help`
-
- 27 Feb, 2025 1 commit
-
-
Eries Trisnadi authored
-
- 24 Feb, 2025 1 commit
-
-
Parth Sareen authored
* envconfig: allow setting context length through env var
-
- 22 Feb, 2025 1 commit
-
-
Blake Mizerany authored
The route assembly in Handler lacked clear organization making it difficult scan for routes and their relationships to each other. This commit aims to fix that by reordering the assembly of routes to group them by category and purpose. Also, be more specific about what "config" refers to (it is about CORS if you were wondering... I was.)
-
- 14 Feb, 2025 1 commit
-
-
Jesse Gross authored
This provides integration with the new Ollama engine (58245413 next ollama runner (#7913)) and the rest of the Ollama infrastructure such as the runner and Ollama server. In addition, it also builds out the KV cache infrastructure to support requirements of how Ollama runs models such as: - Parallel processing - Memory management for defragmentation and shifting - Multi-modal modals Both old and new engines continue to be supported. By default, only the old engine is used. To enable the new engine: Start the server with the OLLAMA_NEW_ENGINE environment variable set: OLLAMA_NEW_ENGINE=1 ./ollama serve Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M: ./ollama run jessegross/llama3.1
-
- 29 Jan, 2025 1 commit
-
-
Michael Yang authored
* add build to .dockerignore * test: only build one arch * add build to .gitignore * fix ccache path * filter amdgpu targets * only filter if autodetecting * Don't clobber gpu list for default runner This ensures the GPU specific environment variables are set properly * explicitly set CXX compiler for HIP * Update build_windows.ps1 This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset. * build: add ollama subdir * add .git to .dockerignore * docs: update development.md * update build_darwin.sh * remove unused scripts * llm: add cwd and build/lib/ollama to library paths * default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS * add additional cmake output vars for msvc * interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12 * remove unncessary filepath.Dir, cleanup * add hardware-specific directory to path * use absolute server path * build: linux arm * cmake install targets * remove unused files * ml: visit each library path once * build: skip cpu variants on arm * build: install cpu targets * build: fix workflow * shorter names * fix rocblas install * docs: clean up development.md * consistent build dir removal in development.md * silence -Wimplicit-function-declaration build warnings in ggml-cpu * update readme * update development readme * llm: update library lookup logic now that there is one runner (#8587) * tweak development.md * update docs * add windows cuda/rocm tests --------- Co-authored-by:
jmorganca <jmorganca@gmail.com> Co-authored-by:
Daniel Hiltgen <daniel@ollama.com>
-
- 10 Dec, 2024 1 commit
-
-
Daniel Hiltgen authored
* llama: wire up builtin runner This adds a new entrypoint into the ollama CLI to run the cgo built runner. On Mac arm64, this will have GPU support, but on all other platforms it will be the lowest common denominator CPU build. After we fully transition to the new Go runners more tech-debt can be removed and we can stop building the "default" runner via make and rely on the builtin always. * build: Make target improvements Add a few new targets and help for building locally. This also adjusts the runner lookup to favor local builds, then runners relative to the executable, and finally payloads. * Support customized CPU flags for runners This implements a simplified custom CPU flags pattern for the runners. When built without overrides, the runner name contains the vector flag we check for (AVX) to ensure we don't try to run on unsupported systems and crash. If the user builds a customized set, we omit the naming scheme and don't check for compatibility. This avoids checking requirements at runtime, so that logic has been removed as well. This can be used to build GPU runners with no vector flags, or CPU/GPU runners with additional flags (e.g. AVX512) enabled. * Use relative paths If the user checks out the repo in a path that contains spaces, make gets really confused so use relative paths for everything in-repo to avoid breakage. * Remove payloads from main binary * install: clean up prior libraries This removes support for v0.3.6 and older versions (before the tar bundle) and ensures we clean up prior libraries before extracting the bundle(s). Without this change, runners and dependent libraries could leak when we update and lead to subtle runtime errors.
-
- 03 Dec, 2024 1 commit
-
-
Sam authored
-
- 26 Oct, 2024 1 commit
-
-
Daniel Hiltgen authored
* Better support for AMD multi-GPU This resolves a number of problems related to AMD multi-GPU setups on linux. The numeric IDs used by rocm are not the same as the numeric IDs exposed in sysfs although the ordering is consistent. We have to count up from the first valid gfx (major/minor/patch with non-zero values) we find starting at zero. There are 3 different env vars for selecting GPUs, and only ROCR_VISIBLE_DEVICES supports UUID based identification, so we should favor that one, and try to use UUIDs if detected to avoid potential ordering bugs with numeric IDs * ROCR_VISIBLE_DEVICES only works on linux Use the numeric ID only HIP_VISIBLE_DEVICES on windows
-
- 19 Oct, 2024 1 commit
-
-
Jeffrey Morgan authored
-
- 08 Oct, 2024 1 commit
-
-
Jeffrey Morgan authored
* Re-introduce the llama package This PR brings back the llama package, making it possible to call llama.cpp and ggml APIs from Go directly via CGo. This has a few advantages: - C APIs can be called directly from Go without needing to use the previous "server" REST API - On macOS and for CPU builds on Linux and Windows, Ollama can be built without a go generate ./... step, making it easy to get up and running to hack on parts of Ollama that don't require fast inference - Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners takes <5 min on a fast CPU) - No git submodule making it easier to clone and build from source This is a big PR, but much of it is vendor code except for: - llama.go CGo bindings - example/: a simple example of running inference - runner/: a subprocess server designed to replace the llm/ext_server package - Makefile an as minimal as possible Makefile to build the runner package for different targets (cpu, avx, avx2, cuda, rocm) Co-authored-by:
Jesse Gross <jesse@ollama.com> Co-authored-by:
Daniel Hiltgen <daniel@ollama.com> * cache: Clear old KV cache entries when evicting a slot When forking a cache entry, if no empty slots are available we evict the least recently used one and copy over the KV entries from the closest match. However, this copy does not overwrite existing values but only adds new ones. Therefore, we need to clear the old slot first. This change fixes two issues: - The KV cache fills up and runs out of space even though we think we are managing it correctly - Performance gets worse over time as we use new cache entries that are not hot in the processor caches * doc: explain golang objc linker warning (#6830) * llama: gather transitive dependencies for rocm for dist packaging (#6848) * Refine go server makefiles to be more DRY (#6924) This breaks up the monolithic Makefile for the Go based runners into a set of utility files as well as recursive Makefiles for the runners. Files starting with the name "Makefile" are buildable, while files that end with ".make" are utilities to include in other Makefiles. This reduces the amount of nearly identical targets and helps set a pattern for future community contributions for new GPU runner architectures. When we are ready to switch over to the Go runners, these files should move to the top of the repo, and we should add targets for the main CLI, as well as a helper "install" (put all the built binaries on the local system in a runnable state) and "dist" target (generate the various tar/zip files for distribution) for local developer use. * llama: don't create extraneous directories (#6988) * llama: Exercise the new build in CI (#6989) Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet. * llama: Refine developer docs for Go server (#6842) This enhances the documentation for development focusing on the new Go server. After we complete the transition further doc refinements can remove the "transition" discussion. * runner.go: Allocate batches for all sequences during init We should tell the model that we could have full batches for all sequences. We already do this when we allocate the batches but it was missed during initialization. * llama.go: Don't return nil from Tokenize on zero length input Potentially receiving nil in a non-error condition is surprising to most callers - it's better to return an empty slice. * runner.go: Remove stop tokens from cache If the last token is EOG then we don't return this and it isn't present in the cache (because it was never submitted to Decode). This works well for extending the cache entry with a new sequence. However, for multi-token stop sequences, we won't return any of the tokens but all but the last one will be in the cache. This means when the conversation continues the cache will contain tokens that don't overlap with the new prompt. This works (we will pick up the portion where there is overlap) but it causes unnecessary cache thrashing because we will fork the original cache entry as it is not a perfect match. By trimming the cache to the tokens that we actually return this issue can be avoided. * runner.go: Simplify flushing of pending tokens * runner.go: Update TODOs * runner.go: Don't panic when processing sequences If there is an error processing a sequence, we should return a clean HTTP error back to Ollama rather than panicing. This will make us more resilient to transient failures. Panics can still occur during startup as there is no way to serve requests if that fails. Co-authored-by:
jmorganca <jmorganca@gmail.com> * runner.go: More accurately capture timings Currently prompt processing time doesn't capture the that it takes to tokenize the input, only decoding time. We should capture the full process to more accurately reflect reality. This is especially true once we start processing images where the initial processing can take significant time. This is also more consistent with the existing C++ runner. * runner.go: Support for vision models In addition to bringing feature parity with the C++ runner, this also incorporates several improvements: - Cache prompting works with images, avoiding the need to re-decode embeddings for every message in a conversation - Parallelism is supported, avoiding the need to restrict to one sequence at a time. (Though for now Ollama will not schedule them while we might need to fall back to the old runner.) Co-authored-by:
jmorganca <jmorganca@gmail.com> * runner.go: Move Unicode checking code and add tests * runner.go: Export external cache members Runner and cache are in the same package so the change doesn't affect anything but it is more internally consistent. * runner.go: Image embedding cache Generating embeddings from images can take significant time (on my machine between 100ms and 8s depending on the model). Although we already cache the result of decoding these images, the embeddings need to be regenerated every time. This is not necessary if we get the same image over and over again, for example, during a conversation. This currently uses a very small cache with a very simple algorithm but it is easy to improve as is warranted. * llama: catch up on patches Carry forward solar-pro and cli-unicode patches * runner.go: Don't re-allocate memory for every batch We can reuse memory allocated from batch to batch since batch size is fixed. This both saves the cost of reallocation as well keeps the cache lines hot. This results in a roughly 1% performance improvement for token generation with Nvidia GPUs on Linux. * runner.go: Default to classic input cache policy The input cache as part of the go runner implemented a cache policy that aims to maximize hit rate in both single and multi- user scenarios. When there is a cache hit, the response is very fast. However, performance is actually slower when there is an input cache miss due to worse GPU VRAM locality. This means that performance is generally better overall for multi-user scenarios (better input cache hit rate, locality was relatively poor already). But worse for single users (input cache hit rate is about the same, locality is now worse). This defaults the policy back to the old one to avoid a regression but keeps the new one available through an environment variable OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is to improve this in the future to get the best of both worlds without user configuration. For inputs that result in cache misses, on Nvidia/Linux this change improves performance by 31% for prompt processing and 13% for token generation. * runner.go: Increase size of response channel Generally the CPU can easily keep up with handling reponses that are generated but there's no reason not to let generation continue and handle things in larger batches if needed. * llama: Add CI to verify all vendored changes have patches (#7066) Make sure we don't accidentally merge changes in the vendored code that aren't also reflected in the patches. * llama: adjust clip patch for mingw utf-16 (#7065) * llama: adjust clip patch for mingw utf-16 * llama: ensure static linking of runtime libs Avoid runtime dependencies on non-standard libraries * runner.go: Enable llamafile (all platforms) and BLAS (Mac OS) These are two features that are shown on llama.cpp's system info that are currently different between the two runners. On my test systems the performance difference is very small to negligible but it is probably still good to equalize the features. * llm: Don't add BOS/EOS for tokenize requests This is consistent with what server.cpp currently does. It affects things like token processing counts for embedding requests. * runner.go: Don't cache prompts for embeddings Our integration with server.cpp implicitly disables prompt caching because it is not part of the JSON object being parsed, this makes the Go runner behavior similarly. Prompt caching has been seen to affect the results of text completions on certain hardware. The results are not wrong either way but they are non-deterministic. However, embeddings seem to be affected even on hardware that does not show this behavior for completions. For now, it is best to maintain consistency with the existing behavior. * runner.go: Adjust debug log levels Add system info printed at startup and quiet down noisier logging. * llama: fix compiler flag differences (#7082) Adjust the flags for the new Go server to more closely match the generate flow * llama: refine developer docs (#7121) * llama: doc and example clean up (#7122) * llama: doc and example clean up * llama: Move new dockerfile into llama dir Temporary home until we fully transition to the Go server * llama: runner doc cleanup * llama.go: Add description for Tokenize error case --------- Co-authored-by:
Jesse Gross <jesse@ollama.com> Co-authored-by:
Daniel Hiltgen <daniel@ollama.com> Co-authored-by:
Daniel Hiltgen <dhiltgen@users.noreply.github.com>
-
- 12 Sep, 2024 1 commit
-
-
Daniel Hiltgen authored
* Optimize container images for startup This change adjusts how to handle runner payloads to support container builds where we keep them extracted in the filesystem. This makes it easier to optimize the cpu/cuda vs cpu/rocm images for size, and should result in faster startup times for container images. * Refactor payload logic and add buildx support for faster builds * Move payloads around * Review comments * Converge to buildx based helper scripts * Use docker buildx action for release
-
- 10 Sep, 2024 1 commit
-
-
Michael Yang authored
-
- 05 Sep, 2024 2 commits
-
-
Daniel Hiltgen authored
With the new very large parameter models, some users are willing to wait for a very long time for models to load.
-
Daniel Hiltgen authored
Provide a mechanism for users to set aside an amount of VRAM on each GPU to make room for other applications they want to start after Ollama, or workaround memory prediction bugs
-
- 27 Aug, 2024 1 commit
-
-
Daniel Hiltgen authored
-
- 23 Aug, 2024 1 commit
-
-
Michael Yang authored
-
- 19 Aug, 2024 2 commits
-
-
Daniel Hiltgen authored
-
Daniel Hiltgen authored
This adjusts linux to follow a similar model to windows with a discrete archive (zip/tgz) to cary the primary executable, and dependent libraries. Runners are still carried as payloads inside the main binary Darwin retain the payload model where the go binary is fully self contained.
-
- 22 Jul, 2024 10 commits
-
-
Michael Yang authored
-
Michael Yang authored
-
Michael Yang authored
-
Michael Yang authored
-
Michael Yang authored
-
Michael Yang authored
-
Michael Yang authored
-
Michael Yang authored
-
Michael Yang authored
-
Daniel Hiltgen authored
The OLLAMA_MAX_VRAM env var was a temporary workaround for OOM scenarios. With Concurrency this was no longer wired up, and the simplistic value doesn't map to multi-GPU setups. Users can still set `num_gpu` to limit memory usage to avoid OOM if we get our predictions wrong.
-
- 03 Jul, 2024 2 commits
-
-
Anatoli Babenia authored
* Co-authored-by: Anatoli Babenia <anatoli@rainforce.org> Co-authored-by:Maas Lalani <maas@lalani.dev>
-
Daniel Hiltgen authored
This change fixes the handling of keep_alive so that if client request omits the setting, we only set this on initial load. Once the model is loaded, if new requests leave this unset, we'll keep whatever keep_alive was there.
-
- 01 Jul, 2024 1 commit
-
-
Daniel Hiltgen authored
This may confuse users thinking "auto" is an acceptable string - it must be numeric
-
- 21 Jun, 2024 2 commits
-
-
Daniel Hiltgen authored
Until ROCm v6.2 ships, we wont be able to get accurate free memory reporting on windows, which makes automatic concurrency too risky. Users can still opt-in but will need to pay attention to model sizes otherwise they may thrash/page VRAM or cause OOM crashes. All other platforms and GPUs have accurate VRAM reporting wired up now, so we can turn on concurrency by default.
-
Daniel Hiltgen authored
This adjusts our default settings to enable multiple models and parallel requests to a single model. Users can still override these by the same env var settings as before. Parallel has a direct impact on num_ctx, which in turn can have a significant impact on small VRAM GPUs so this change also refines the algorithm so that when parallel is not explicitly set by the user, we try to find a reasonable default that fits the model on their GPU(s). As before, multiple models will only load concurrently if they fully fit in VRAM.
-
- 19 Jun, 2024 2 commits
-
-
Daniel Hiltgen authored
This reverts commit 755b4e4f.
-
- 17 Jun, 2024 1 commit
-
-
Jeffrey Morgan authored
* gpu: add env var for detecting intel oneapi gpus * fix build error
-
- 14 Jun, 2024 1 commit
-
-
Daniel Hiltgen authored
This should aid in troubleshooting by capturing and reporting the GPU settings at startup in the logs along with all the other server settings.
-