- 08 Mar, 2025 2 commits
-
-
Jesse Gross authored
Similar to the llama engine, quantizing the KV cache requires flash attention to be enabled through the Ollama server.
-
Jesse Gross authored
Debug logging of every token has previously caused test timeouts on slower machines.
-
- 07 Mar, 2025 3 commits
-
-
Parth Sareen authored
This change bring in various interface cleanups along with greatly improving the performance of the sampler. Tested with llama3.2 on local machine. Improves performance from ~ 70 tokens/s -> 135 tokens/s with topK(40) enabled. Without topK performance is ~ 110 tokens/s
-
Jesse Gross authored
Various vision models have different requirements for how they receive their inputs. For example: - Mllama wants images together with text and the image embeddings don't themselves have positions or get stored in the main KV cache - Llava-style models feed in embeddings similar to tokens and images correspond to a varying number of tokens in the cache. In addition, the strategy for providing inputs must support batching and multiple sequences, which are managed by the runner. At the same time, we want to keep data handling fully in the model so that new architectures are not bottlenecked by runner code which does not understand their particular requirements. This provides a method for models to edit the input stream so that it meets their needs while still being in a format that the runner understands. This allows the runner to avoid special processing for different models. In addition, this fixes a regression where non-vision models may try to incorrectly interpret images.
-
Jesse Gross authored
We sometimes tokenize partial strings. For example, with multimodal inputs, we split the input string around the images and then tokenize each piece. In these cases, we should only add the special tokens on the first piece.
-
- 04 Mar, 2025 1 commit
-
-
Michael Yang authored
- output backend system info when initializing the backend. this ensures this information is always present without needing to be called explicitly - convert to structured logging - enumerate devices rather than backends since devices are ordered - track device indices grouped by device name
-
- 02 Mar, 2025 1 commit
-
-
Jesse Gross authored
The GGML flash attention kernel has specific requirements for padding and permutation. This adds support to the KV cache for conforming to these requirements so that flash attention can be enabled. Flash attention can be used in the same situations as the llama engine and is enabled by the user in the same way.
-
- 28 Feb, 2025 2 commits
-
-
Michael Yang authored
defer the cancel to guarantee it runs
-
Bruce MacDonald authored
As are adding support for weighted sampling we have seen some performance regressions, bypassing the sampler logic for now and defaulting to greedy until we can benchmark the new sampler logic.
-
- 27 Feb, 2025 2 commits
-
-
Michael Yang authored
-
Michael Yang authored
-
- 25 Feb, 2025 1 commit
-
-
Parth Sareen authored
-
- 20 Feb, 2025 1 commit
-
-
Jesse Gross authored
Currently the following parameters are in the runner but not used: - numGPULayers - mainGPU - threads - tensorSplit This passes them through to the backend, which is where they would actually get used. However, the GGML backend does not yet do anything with them.
-
- 14 Feb, 2025 3 commits
-
-
Daniel Hiltgen authored
-
Jesse Gross authored
We currently print system info before the GGML backends are loaded. This results in only getting information about the default lowest common denominator runner. If we move up the GGML init then we can see what we are actually running. Before: time=2025-02-14T11:15:07.606-08:00 level=INFO source=runner.go:935 msg=system info="CPU : LLAMAFILE = 1 | CPU : LLAMAFILE = 1 | cgo(gcc)" threads=24 After: time=2025-02-14T11:16:02.936-08:00 level=INFO source=runner.go:935 msg=system info="CPU : LLAMAFILE = 1 | CPU : LLAMAFILE = 1 | CUDA : ARCHS = 890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | LLAMAFILE = 1 | cgo(gcc)" threads=24
-
Jesse Gross authored
This provides integration with the new Ollama engine (58245413 next ollama runner (#7913)) and the rest of the Ollama infrastructure such as the runner and Ollama server. In addition, it also builds out the KV cache infrastructure to support requirements of how Ollama runs models such as: - Parallel processing - Memory management for defragmentation and shifting - Multi-modal modals Both old and new engines continue to be supported. By default, only the old engine is used. To enable the new engine: Start the server with the OLLAMA_NEW_ENGINE environment variable set: OLLAMA_NEW_ENGINE=1 ./ollama serve Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M: ./ollama run jessegross/llama3.1
-