- 02 Nov, 2024 2 commits
-
-
Jesse Gross authored
Check for NULL return values from llama.cpp in more places and convert them into Go errors, which should make debugging easier in the future rather than having hidden surprises in our data structures.
-
Jesse Gross authored
Mllama has large embeddings (100 MB per image) and each embedding is represented as 1 token when passed to llama.cpp. Batches are pre- allocated for the size of the tokens times the batch size, so this results in allocations of over 50 GB at the default batch size. On some systems, these mallocs will fail. Since an image is represented as a single token and mllama doesn't support more than 1 image per request, we only need to allocate a batch size of 1, which is much more reasonable. In addition, for non-multimodal models, we don't need to allocate the embedding batches at all. Fixes #7464
-
- 31 Oct, 2024 1 commit
-
-
Jesse Gross authored
Currently if an input has embeddings at any point then we will set cross attention to true from the beginning. This means that any tokens before the embeddings are sent will incorrectly have cross attention layers applied. This only sets cross attention when we have an embedding, either previously in this sequence or in the cache. It also makes cross attention capable of supporting parallelism at the runner level, though the mllama implementation doesn't support that yet.
-
- 30 Oct, 2024 1 commit
-
-
Jesse Gross authored
-Update mllama to take the cross attention state as embeddings in a batch, more similar to how Llava handles it. This improves integration with the input cache. -Pass locations in a prompt for embeddings using tags similar to Llava. -Abstract interface to vision models so the main runner accesses Clip and Mllama similarly Co-authored-by:Michael Yang <mxyng@pm.me>
-