Unverified Commit f2890a44 authored by Gabe Goodhart's avatar Gabe Goodhart Committed by GitHub
Browse files

IBM granite/granitemoe architecture support (#6760)

* fix(ext_server): Port llama.cpp sampling refactors to ext_server

This was a fairly large changeset. I closely followed the changes here:
https://github.com/ggerganov/llama.cpp/commit/df270ef74596da8f1178f08991f4c51f18c9ee82



Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(server.cpp): Refactor server.cpp logging for llama.cpp overhaul

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* feat: Bump llama.cpp to the latest master with `granite` support

This does not yet have granite MoE support, but that can come in a
follow up PR

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(patches): Update all patches (except solar-pro) to work with bumped llama.cpp

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(solar): Update solar patch for llama.cpp bump

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Bump llama.cpp for granitemoe support

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Bump llama.cpp for granitemoe support

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(solar): Update the solar-pro patch for latest llama.cpp bump

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Bump to the latest master of llama.cpp

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(patches): Update all patches for latest bump

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* feat(llama): Always run sync.sh from the right directory

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(llama/patches): Update llama patches

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* feat(llama)!: Rough sync with llama.cpp submodule

There are a number of changes that will need to be propagated to llama.go
before any of this works!

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(llama/patches): Add a patch and update for missing ggml-impl.h include

This include is where the ggml_cgraph struct is defined. It is included in
many of the .c files to define the forward declartion in ggml.h. It seems
that with the subset of code included here, the import was somehow lost (or
out-of-order) when building, so adding this include to llama.cpp fixes the
missing definition.

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(llama/sync): Add missing ggml-cpu-impl.h copy-over in sync.sh

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(llama): Add missing log.cpp

This was added as part of the logging overhaul done in llama.cpp

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(llama): Overhaul use of sampling module for llama.cpp changes

The changes here reflect the changes made in the big llama.cpp sampling PR
https://github.com/ggerganov/llama.cpp/pull/9294



The sampling functionality is now broken into the base interface
(llama_sampler) and the generation implementation (gpt_sampler). The
changes here reflect that. Since the sampling.h/sampling.cpp code uses c++
STL headers, the sampling_ext.[h|cpp] wrapper is maintained to allow go to
access a pure-C interface.

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(llama): Fix the impl of SampleTokenGreedy for new sampling

I don't think this method is currently used, so it could probably just be
removed so that all sampling goes through the GPT interface, but in the
interest of doing no harm, this should keep the method working as expected.

Branch: IBMGraniteArchitectureSupport

* fix(llama): Remove unused SampleTokenGreedy

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(sync): Remove bash-specific change to sync.sh

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* chore(gofumpt): Format on llama.go to pass linting

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(llm): Fix missing <thread> include in ext_server

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(llama): Remove TODO about grammar_first

This feature was not used/needed previously so should be fine without
plumbing it through now.

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(llama): Better naming for sampling wrapper and args

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(llama): Fix patch 05 to use new wrapper api and re-sync

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* runner: Flush pending responses before returning

If there are any pending reponses (such as from potential stop
tokens) then we should send them back before ending the sequence.
Otherwise, we can be missing tokens at the end of a response.

Fixes #6707

* fix(llama/sampling): Use gpt_sampler with a forward declaration

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(llama): Remove unnecessary patch for gguf impl header

This was caused by an earlier mistake in the embeddings patch that was
dereferencing the pointer instead of using the wrapper API.

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

* fix(llm): Remove use of deprecated --log-disable flag

Branch: IBMGraniteArchitectureSupport
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>

---------
Signed-off-by: default avatarGabe Goodhart <ghart@us.ibm.com>
parent 05cd82ef
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......@@ -25,6 +25,7 @@
*/
#include "binbcast.cuh"
#include <cstdint>
static __device__ __forceinline__ float op_repeat(const float a, const float b) {
return b;
......@@ -116,6 +117,30 @@ static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * s
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
template <typename T>
static __global__ void k_repeat_back(
const T * __restrict__ src, T * __restrict__ dst, const int64_t ne00, const int64_t ne01, const int64_t ne02,
const int64_t ne0, const int64_t ne1, const int64_t ne2) {
const int64_t tid0 = (int64_t) blockIdx.x*blockDim.x + threadIdx.x;
const int64_t tid1 = (int64_t) blockIdx.y*blockDim.y + threadIdx.y;
const int64_t tid2 = (int64_t) blockIdx.z*blockDim.z + threadIdx.z;
if (tid0 >= ne0) {
return;
}
T sum = 0;
for (int64_t i2 = tid2; i2 < ne02; i2 += ne2) {
for (int64_t i1 = tid1; i1 < ne01; i1 += ne1) {
for (int64_t i0 = tid0; i0 < ne00; i0 += ne0) {
sum += src[i2*ne01*ne00 + i1*ne00 + i0];
}
}
}
dst[tid2*ne1*ne0 + tid1*ne0 + tid0] = sum;
}
template<float (*bin_op)(const float, const float)>
struct bin_bcast_cuda {
template<typename src0_t, typename src1_t, typename dst_t>
......@@ -273,6 +298,16 @@ struct bin_bcast_cuda {
}
};
template <typename T>
static void repeat_back_cuda(
const T * src, T * dst, const int64_t ne00, const int64_t ne01, const int64_t ne02,
const int64_t ne0, const int64_t ne1, const int64_t ne2, cudaStream_t stream) {
const dim3 block_dims(WARP_SIZE, 1, 1);
const dim3 block_nums((ne0 + WARP_SIZE - 1) / WARP_SIZE, ne1, ne2);
k_repeat_back<T><<<block_nums, block_dims, 0, stream>>>(src, dst, ne00, ne01, ne02, ne0, ne1, ne2);
}
template<class op>
static void ggml_cuda_op_bin_bcast(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
......@@ -312,3 +347,35 @@ void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
}
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(src0->type == dst->type);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_can_repeat(dst, src0));
cudaStream_t stream = ctx.stream();
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
GGML_ASSERT(src0->ne[3] == 1);
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
const int64_t ne2 = dst->ne[2];
GGML_ASSERT(dst->ne[3] == 1);
switch (dst->type) {
case GGML_TYPE_F32: {
const float * src0_d = (const float *) src0->data;
float * dst_d = (float *) dst->data;
repeat_back_cuda<float>(src0_d, dst_d, ne00, ne01, ne02, ne0, ne1, ne2, stream);
} break;
default: {
GGML_ASSERT(false);
} break;
}
}
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......@@ -31,3 +31,5 @@ void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_sub(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......@@ -76,6 +76,8 @@
#define CC_RDNA1 (CC_OFFSET_AMD + 1010)
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
#define CC_RDNA3 (CC_OFFSET_AMD + 1100)
#define CC_QY1 210
#define CC_QY2 220
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
......@@ -160,6 +162,10 @@ typedef float2 dfloat2;
#define INT8_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1)
#define FLASH_ATTN_AVAILABLE
#endif // !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1)
static constexpr bool fast_fp16_available(const int cc) {
return cc >= CC_PASCAL && cc != 610;
}
......@@ -595,6 +601,7 @@ struct ggml_graph_node_properties {
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];
void * src_address[GGML_MAX_SRC];
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
};
struct ggml_cuda_graph {
......
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......
This diff is collapsed.
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......@@ -26,7 +26,7 @@
#include "common.cuh"
#include "cross-entropy-loss.cuh"
#include "sumrows.cuh"
#include "sum.cuh"
#include <cmath>
#include <cstdint>
......@@ -97,6 +97,32 @@ static __global__ void cross_entropy_loss_f32(const float * logits, const float
dst[blockIdx.x] = loss;
}
static __global__ void cross_entropy_loss_back_f32(const float * logits, const float * labels, const float * loss, float * dst, const int nclasses) {
extern __shared__ float tmp[];
float maxval = -INFINITY;
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
const float val = logits[blockIdx.x*nclasses + i];
maxval = fmaxf(maxval, val);
tmp[i] = val;
}
maxval = warp_reduce_max(maxval);
float sum = 0.0f;
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
const float val = expf(tmp[i] - maxval);
sum += val;
tmp[i] = val;
}
sum = warp_reduce_sum(sum);
const float sm_scale = 1.0f/sum;
const float d_by_nrows = *loss/gridDim.x;
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
dst[blockIdx.x*nclasses + i] = (tmp[i]*sm_scale - labels[blockIdx.x*nclasses + i])*d_by_nrows;
}
}
void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
......@@ -128,5 +154,39 @@ void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor *
cross_entropy_loss_f32<<<blocks_num, blocks_dim, shmem, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
// Combine results from individual blocks:
sum_rows_f32_cuda(dst_tmp.ptr, dst_d, blocks_num.x, 1, stream);
sum_f32_cuda(pool, dst_tmp.ptr, dst_d, blocks_num.x, stream);
}
void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * opt0 = dst->src[2];
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(opt0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(opt0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, src1));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const float * src0_d = (const float *) src0->data;
const float * src1_d = (const float *) src1->data;
const float * opt0_d = (const float *) opt0->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
const dim3 blocks_dim(WARP_SIZE, 1, 1);
const dim3 blocks_num(nrows, 1, 1);
const int shmem = ne00*sizeof(float);
cross_entropy_loss_back_f32<<<blocks_num, blocks_dim, shmem, stream>>>(src0_d, src1_d, opt0_d, dst_d, ne00);
}
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......@@ -29,3 +29,5 @@
#define CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE 256
void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
/**
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment