Unverified Commit e95ffc74 authored by Jeffrey Morgan's avatar Jeffrey Morgan Committed by GitHub
Browse files

llama: remove server static assets (#3174)

parent 2dce1ab4
This diff is collapsed.
This source diff could not be displayed because it is too large. You can view the blob instead.
This diff is collapsed.
This diff is collapsed.
#pragma once
#include <string>
#include <vector>
#include <set>
#include <mutex>
#include <condition_variable>
#include <unordered_map>
#include "json.hpp"
#include "utils.hpp"
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
using json = nlohmann::json;
inline static json oaicompat_completion_params_parse(
const struct llama_model * model,
const json &body, /* openai api json semantics */
const std::string &chat_template)
{
json llama_params;
llama_params["__oaicompat"] = true;
// Map OpenAI parameters to llama.cpp parameters
//
// For parameters that are defined by the OpenAI documentation (e.g.
// temperature), we explicitly specify OpenAI's intended default; we
// need to do that because sometimes OpenAI disagrees with llama.cpp
//
// https://platform.openai.com/docs/api-reference/chat/create
llama_sampling_params default_sparams;
llama_params["model"] = json_value(body, "model", std::string("unknown"));
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
llama_params["top_p"] = json_value(body, "top_p", 1.0);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
if (body.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object());
}
// Handle 'stop' field
if (body.contains("stop") && body["stop"].is_string()) {
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
} else {
llama_params["stop"] = json_value(body, "stop", json::array());
}
// Ensure there is ChatML-specific end sequence among stop words
llama_params["stop"].push_back("<|im_end|>");
return llama_params;
}
inline static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
{
json result = response.result_json;
bool stopped_word = result.count("stopped_word") != 0;
bool stopped_eos = json_value(result, "stopped_eos", false);
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason = "length";
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
json choices =
streaming ? json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}})
: json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"message", json{{"content", content},
{"role", "assistant"}}}}});
std::time_t t = std::time(0);
json res =
json{{"choices", choices},
{"created", t},
{"model",
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
{"usage",
json{{"completion_tokens", num_tokens_predicted},
{"prompt_tokens", num_prompt_tokens},
{"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
{"id", gen_chatcmplid()}};
if (server_verbose) {
res["__verbose"] = result;
}
if (result.contains("completion_probabilities")) {
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
}
return res;
}
// return value is vector as there is one case where we might need to generate two responses
inline static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
json result = response.result_json;
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
return std::vector<json>({response.result_json});
}
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
bool stopped_word = json_value(result, "stopped_word", false);
bool stopped_eos = json_value(result, "stopped_eos", false);
bool stopped_limit = json_value(result, "stopped_limit", false);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason;
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
if (stopped_limit) {
finish_reason = "length";
}
std::time_t t = std::time(0);
json choices;
if (!finish_reason.empty()) {
choices = json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}});
} else {
if (first) {
if (content.empty()) {
choices = json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{{"role", "assistant"}}}}});
} else {
// We have to send this as two updates to conform to openai behavior
json initial_ret = json{{"choices", json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"role", "assistant"}
}}}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
json second_ret = json{
{"choices", json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"content", content}}}
}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({initial_ret, second_ret});
}
} else {
// Some idiosyncrasy in task processing logic makes several trailing calls
// with empty content, we ignore these at the calee site.
if (content.empty()) {
return std::vector<json>({json::object()});
}
choices = json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta",
json{
{"content", content},
}},
}});
}
}
json ret = json{{"choices", choices},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({ret});
}
inline static json format_embeddings_response_oaicompat(const json &request, const json &embeddings)
{
json res =
json{
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage",
json{{"prompt_tokens", 0},
{"total_tokens", 0}}},
{"data", embeddings}
};
return res;
}
...@@ -2,7 +2,6 @@ ...@@ -2,7 +2,6 @@
#include "llama.h" #include "llama.h"
#include "grammar-parser.h" #include "grammar-parser.h"
#include "utils.hpp" #include "utils.hpp"
#include "oai.hpp"
#include "../llava/clip.h" #include "../llava/clip.h"
#include "../llava/llava.h" #include "../llava/llava.h"
...@@ -18,12 +17,6 @@ ...@@ -18,12 +17,6 @@
#include "httplib.h" #include "httplib.h"
#include "json.hpp" #include "json.hpp"
// auto generated files (update with ./deps.sh)
#include "index.html.hpp"
#include "index.js.hpp"
#include "completion.js.hpp"
#include "json-schema-to-grammar.mjs.hpp"
#include <cstddef> #include <cstddef>
#include <thread> #include <thread>
#include <chrono> #include <chrono>
...@@ -129,9 +122,6 @@ struct server_slot { ...@@ -129,9 +122,6 @@ struct server_slot {
bool stopped_word = false; bool stopped_word = false;
bool stopped_limit = false; bool stopped_limit = false;
bool oaicompat = false;
std::string oaicompat_model;
std::string stopping_word; std::string stopping_word;
// sampling // sampling
...@@ -543,14 +533,6 @@ struct llama_server_context ...@@ -543,14 +533,6 @@ struct llama_server_context
slot_params default_params; slot_params default_params;
llama_sampling_params default_sparams; llama_sampling_params default_sparams;
if (data.count("__oaicompat") != 0) {
slot->oaicompat = true;
slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
} else {
slot->oaicompat = false;
slot->oaicompat_model = "";
}
slot->params.stream = json_value(data, "stream", false); slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false); slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict); slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
...@@ -1148,12 +1130,6 @@ struct llama_server_context ...@@ -1148,12 +1130,6 @@ struct llama_server_context
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output); res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
} }
if (slot.oaicompat)
{
res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
res.result_json["model"] = slot.oaicompat_model;
}
queue_results.send(res); queue_results.send(res);
} }
...@@ -1201,12 +1177,6 @@ struct llama_server_context ...@@ -1201,12 +1177,6 @@ struct llama_server_context
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs); res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
} }
if (slot.oaicompat)
{
res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
res.result_json["model"] = slot.oaicompat_model;
}
queue_results.send(res); queue_results.send(res);
} }
...@@ -3075,41 +3045,9 @@ int _main(int argc, char **argv) ...@@ -3075,41 +3045,9 @@ int _main(int argc, char **argv)
// this is only called if no index.html is found in the public --path // this is only called if no index.html is found in the public --path
svr.Get("/", [](const httplib::Request &, httplib::Response &res) svr.Get("/", [](const httplib::Request &, httplib::Response &res)
{ {
res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html; charset=utf-8"); res.set_content("server running", "text/plain; charset=utf-8");
return false; res.status = 200; // Unauthorized
}); return true;
// this is only called if no index.js is found in the public --path
svr.Get("/index.js", [](const httplib::Request &, httplib::Response &res)
{
res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript; charset=utf-8");
return false;
});
// this is only called if no index.html is found in the public --path
svr.Get("/completion.js", [](const httplib::Request &, httplib::Response &res)
{
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript; charset=utf-8");
return false;
});
// this is only called if no index.html is found in the public --path
svr.Get("/json-schema-to-grammar.mjs", [](const httplib::Request &, httplib::Response &res)
{
res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript; charset=utf-8");
return false;
});
svr.Get("/props", [&llama](const httplib::Request & req, httplib::Response &res)
{
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
json data = {
{ "user_name", llama.name_user.c_str() },
{ "assistant_name", llama.name_assistant.c_str() },
{ "default_generation_settings", llama.default_generation_settings_for_props },
{ "total_slots", llama.params.n_parallel }
};
res.set_content(data.dump(), "application/json; charset=utf-8");
}); });
svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res) svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
...@@ -3189,180 +3127,6 @@ int _main(int argc, char **argv) ...@@ -3189,180 +3127,6 @@ int _main(int argc, char **argv)
} }
}); });
svr.Get("/v1/models", [&params, &model_meta](const httplib::Request& req, httplib::Response& res)
{
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
std::time_t t = std::time(0);
json models = {
{"object", "list"},
{"data", {
{
{"id", params.model_alias},
{"object", "model"},
{"created", t},
{"owned_by", "llamacpp"},
{"meta", model_meta}
},
}}
};
res.set_content(models.dump(), "application/json; charset=utf-8");
});
const auto chat_completions = [&llama, &validate_api_key, &sparams](const httplib::Request &req, httplib::Response &res)
{
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
if (!validate_api_key(req, res)) {
return;
}
json data = oaicompat_completion_params_parse(llama.model, json::parse(req.body), sparams.chat_template);
const int task_id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(task_id);
llama.request_completion(task_id, data, false, false, -1);
if (!json_value(data, "stream", false)) {
std::string completion_text;
task_result result = llama.queue_results.recv(task_id);
if (!result.error && result.stop) {
json oaicompat_result = format_final_response_oaicompat(data, result);
res.set_content(oaicompat_result.dump(-1, ' ', false,
json::error_handler_t::replace),
"application/json; charset=utf-8");
} else {
res.status = 500;
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
}
llama.queue_results.remove_waiting_task_id(task_id);
} else {
const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) {
while (true) {
task_result llama_result = llama.queue_results.recv(task_id);
if (!llama_result.error) {
std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
for (auto it = result_array.begin(); it != result_array.end(); ++it)
{
if (!it->empty()) {
const std::string str =
"data: " +
it->dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {{"to_send", str}});
if (!sink.write(str.c_str(), str.size())) {
llama.queue_results.remove_waiting_task_id(task_id);
return false;
}
}
}
if (llama_result.stop) {
break;
}
} else {
const std::string str =
"error: " +
llama_result.result_json.dump(-1, ' ', false,
json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {{"to_send", str}});
if (!sink.write(str.c_str(), str.size())) {
llama.queue_results.remove_waiting_task_id(task_id);
return false;
}
break;
}
}
sink.done();
llama.queue_results.remove_waiting_task_id(task_id);
return true;
};
auto on_complete = [task_id, &llama](bool) {
// cancel request
llama.request_cancel(task_id);
llama.queue_results.remove_waiting_task_id(task_id);
};
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
}
};
svr.Post("/chat/completions", chat_completions);
svr.Post("/v1/chat/completions", chat_completions);
svr.Post("/infill", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
{
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
if (!validate_api_key(req, res)) {
return;
}
json data = json::parse(req.body);
const int task_id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(task_id);
llama.request_completion(task_id, data, true, false, -1);
if (!json_value(data, "stream", false)) {
std::string completion_text;
task_result result = llama.queue_results.recv(task_id);
if (!result.error && result.stop)
{
res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
}
else
{
res.status = 404;
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
}
llama.queue_results.remove_waiting_task_id(task_id);
} else {
const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink) {
while (true)
{
task_result result = llama.queue_results.recv(task_id);
if (!result.error) {
const std::string str =
"data: " +
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
if (!sink.write(str.c_str(), str.size()))
{
llama.queue_results.remove_waiting_task_id(task_id);
return false;
}
if (result.stop)
{
break;
}
}
else
{
break;
}
}
llama.queue_results.remove_waiting_task_id(task_id);
sink.done();
return true;
};
auto on_complete = [task_id, &llama] (bool)
{
// cancel
llama.request_cancel(task_id);
};
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
}
});
svr.Options(R"(/.*)", [](const httplib::Request &, httplib::Response &res)
{ return res.set_content("", "application/json; charset=utf-8"); });
svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res) svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res)
{ {
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
...@@ -3427,66 +3191,6 @@ int _main(int argc, char **argv) ...@@ -3427,66 +3191,6 @@ int _main(int argc, char **argv)
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8"); return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
}); });
svr.Post("/v1/embeddings", [&llama](const httplib::Request &req, httplib::Response &res)
{
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
const json body = json::parse(req.body);
json prompt;
if (body.count("input") != 0)
{
prompt = body["input"];
// batch
if(prompt.is_array()) {
json data = json::array();
int i = 0;
for (const json &elem : prompt) {
const int task_id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(task_id);
llama.request_completion(task_id, { {"prompt", elem}, { "n_predict", 0} }, false, true, -1);
// get the result
task_result result = llama.queue_results.recv(task_id);
llama.queue_results.remove_waiting_task_id(task_id);
json embedding = json{
{"embedding", json_value(result.result_json, "embedding", json::array())},
{"index", i++},
{"object", "embedding"}
};
data.push_back(embedding);
}
json result = format_embeddings_response_oaicompat(body, data);
return res.set_content(result.dump(), "application/json; charset=utf-8");
}
}
else
{
prompt = "";
}
// create and queue the task
const int task_id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(task_id);
llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}}, false, true, -1);
// get the result
task_result result = llama.queue_results.recv(task_id);
llama.queue_results.remove_waiting_task_id(task_id);
json data = json::array({json{
{"embedding", json_value(result.result_json, "embedding", json::array())},
{"index", 0},
{"object", "embedding"}
}}
);
json root = format_embeddings_response_oaicompat(body, data);
// send the result
return res.set_content(root.dump(), "application/json; charset=utf-8");
});
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!? // GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
// "Bus error: 10" - this is on macOS, it does not crash on Linux // "Bus error: 10" - this is on macOS, it does not crash on Linux
//std::thread t2([&]() //std::thread t2([&]()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment