> Note: this example is a slightly modified version of PrivateGPT using models such as Llama 2 Uncensored. All credit for PrivateGPT goes to Iván Martínez who is the creator of it, and you can find his GitHub repo [here](https://github.com/imartinez/privateGPT).
Loading new documents: 100%|██████████████████████| 1/1 [00:01<00:00, 1.73s/it]
Loaded 1 new documents from source_documents
Split into 90 chunks of text (max. 500 tokens each)
Creating embeddings. May take some minutes...
Using embedded DuckDB with persistence: data will be stored in: db
Ingestion complete! You can now run privateGPT.py to query your documents
```
### Ask questions
```shell
python privateGPT.py
Enter a query: How many locations does WeWork have?
> Answer (took 17.7 s.):
As of June 2023, WeWork has 777 locations worldwide, including 610 Consolidated Locations (as defined in the section entitled Key Performance Indicators).
```
### Try a different model:
```
ollama pull llama2:13b
MODEL=llama2:13b python privateGPT.py
```
## Adding more files
Put any and all your files into the `source_documents` directory