Unverified Commit 84a23144 authored by Parth Sareen's avatar Parth Sareen Committed by GitHub
Browse files

examples: remove codified examples (#8267)

parent 17fcdea6
# Ollama API Examples
Run the examples in this directory with:
```
go run example_name/main.go
```
## Chat - Chat with a model
- [chat/main.go](chat/main.go)
## Generate - Generate text from a model
- [generate/main.go](generate/main.go)
- [generate-streaming/main.go](generate-streaming/main.go)
## Pull - Pull a model
- [pull-progress/main.go](pull-progress/main.go)
......@@ -12,3 +12,9 @@ Ollama JavaScript examples at [ollama-js/examples](https://github.com/ollama/oll
## OpenAI compatibility examples
Ollama OpenAI compatibility examples at [ollama/examples/openai](../docs/openai.md)
## Community examples
- [LangChain Ollama Python](https://python.langchain.com/docs/integrations/chat/ollama/)
- [LangChain Ollama JS](https://js.langchain.com/docs/integrations/chat/ollama/)
node_modules
bun.lockb
.vscode
# OSX
.DS_STORE
# Models
models/
# Local Chroma db
.chroma/
db/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
# Deploy Ollama to Fly.io
> Note: this example exposes a public endpoint and does not configure authentication. Use with care.
## Prerequisites
- Ollama: https://ollama.com/download
- Fly.io account. Sign up for a free account: https://fly.io/app/sign-up
## Steps
1. Login to Fly.io
```bash
fly auth login
```
1. Create a new Fly app
```bash
fly launch --name <name> --image ollama/ollama --internal-port 11434 --vm-size shared-cpu-8x --now
```
1. Pull and run `orca-mini:3b`
```bash
OLLAMA_HOST=https://<name>.fly.dev ollama run orca-mini:3b
```
`shared-cpu-8x` is a free-tier eligible machine type. For better performance, switch to a `performance` or `dedicated` machine type or attach a GPU for hardware acceleration (see below).
## (Optional) Persistent Volume
By default Fly Machines use ephemeral storage which is problematic if you want to use the same model across restarts without pulling it again. Create and attach a persistent volume to store the downloaded models:
1. Create the Fly Volume
```bash
fly volume create ollama
```
1. Update `fly.toml` and add `[mounts]`
```toml
[mounts]
source = "ollama"
destination = "/mnt/ollama/models"
```
1. Update `fly.toml` and add `[env]`
```toml
[env]
OLLAMA_MODELS = "/mnt/ollama/models"
```
1. Deploy your app
```bash
fly deploy
```
## (Optional) Hardware Acceleration
Fly.io GPU is currently in waitlist. Sign up for the waitlist: https://fly.io/gpu
Once you've been accepted, create the app with the additional flags `--vm-gpu-kind a100-pcie-40gb` or `--vm-gpu-kind a100-pcie-80gb`.
package main
import (
"bytes"
"fmt"
"io"
"log"
"net/http"
"os"
)
func main() {
body := []byte(`{"model":"mistral"}`)
resp, err := http.Post("http://localhost:11434/api/generate", "application/json", bytes.NewBuffer(body))
if err != nil {
fmt.Print(err.Error())
os.Exit(1)
}
defer resp.Body.Close()
responseData, err := io.ReadAll(resp.Body)
if err != nil {
log.Fatal(err)
}
fmt.Println(string(responseData))
}
# Ollama Jupyter Notebook
This example downloads and installs Ollama in a Jupyter instance such as Google Colab. It will start the Ollama service and expose an endpoint using `ngrok` which can be used to communicate with the Ollama instance remotely.
For best results, use an instance with GPU accelerator.
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "93f59dcb-c588-41b8-a792-55d88ade739c",
"metadata": {},
"outputs": [],
"source": [
"# Download and run the Ollama Linux install script\n",
"!curl -fsSL https://ollama.com/install.sh | sh\n",
"!command -v systemctl >/dev/null && sudo systemctl stop ollama"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "658c147e-c7f8-490e-910e-62b80f577dda",
"metadata": {},
"outputs": [],
"source": [
"!pip install aiohttp pyngrok\n",
"\n",
"import os\n",
"import asyncio\n",
"from aiohttp import ClientSession\n",
"\n",
"# Set LD_LIBRARY_PATH so the system NVIDIA library becomes preferred\n",
"# over the built-in library. This is particularly important for \n",
"# Google Colab which installs older drivers\n",
"os.environ.update({'LD_LIBRARY_PATH': '/usr/lib64-nvidia'})\n",
"\n",
"async def run(cmd):\n",
" '''\n",
" run is a helper function to run subcommands asynchronously.\n",
" '''\n",
" print('>>> starting', *cmd)\n",
" p = await asyncio.subprocess.create_subprocess_exec(\n",
" *cmd,\n",
" stdout=asyncio.subprocess.PIPE,\n",
" stderr=asyncio.subprocess.PIPE,\n",
" )\n",
"\n",
" async def pipe(lines):\n",
" async for line in lines:\n",
" print(line.strip().decode('utf-8'))\n",
"\n",
" await asyncio.gather(\n",
" pipe(p.stdout),\n",
" pipe(p.stderr),\n",
" )\n",
"\n",
"\n",
"await asyncio.gather(\n",
" run(['ollama', 'serve']),\n",
" run(['ngrok', 'http', '--log', 'stderr', '11434']),\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e7735a55-9aad-4caf-8683-52e2163ba53b",
"metadata": {},
"source": [
"The previous cell starts two processes, `ollama` and `ngrok`. The log output will show a line like the following which describes the external address.\n",
"\n",
"```\n",
"t=2023-11-12T22:55:56+0000 lvl=info msg=\"started tunnel\" obj=tunnels name=command_line addr=http://localhost:11434 url=https://8249-34-125-179-11.ngrok.io\n",
"```\n",
"\n",
"The external address in this case is `https://8249-34-125-179-11.ngrok.io` which can be passed into `OLLAMA_HOST` to access this instance.\n",
"\n",
"```bash\n",
"export OLLAMA_HOST=https://8249-34-125-179-11.ngrok.io\n",
"ollama list\n",
"ollama run mistral\n",
"```"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
# Deploy Ollama to Kubernetes
## Prerequisites
- Ollama: https://ollama.com/download
- Kubernetes cluster. This example will use Google Kubernetes Engine.
## Steps
1. Create the Ollama namespace, deployment, and service
```bash
kubectl apply -f cpu.yaml
```
## (Optional) Hardware Acceleration
Hardware acceleration in Kubernetes requires NVIDIA's [`k8s-device-plugin`](https://github.com/NVIDIA/k8s-device-plugin) which is deployed in Kubernetes in form of daemonset. Follow the link for more details.
Once configured, create a GPU enabled Ollama deployment.
```bash
kubectl apply -f gpu.yaml
```
## Test
1. Port forward the Ollama service to connect and use it locally
```bash
kubectl -n ollama port-forward service/ollama 11434:80
```
1. Pull and run a model, for example `orca-mini:3b`
```bash
ollama run orca-mini:3b
```
\ No newline at end of file
---
apiVersion: v1
kind: Namespace
metadata:
name: ollama
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: ollama
namespace: ollama
spec:
selector:
matchLabels:
name: ollama
template:
metadata:
labels:
name: ollama
spec:
containers:
- name: ollama
image: ollama/ollama:latest
ports:
- name: http
containerPort: 11434
protocol: TCP
---
apiVersion: v1
kind: Service
metadata:
name: ollama
namespace: ollama
spec:
type: ClusterIP
selector:
name: ollama
ports:
- port: 80
name: http
targetPort: http
protocol: TCP
---
apiVersion: v1
kind: Namespace
metadata:
name: ollama
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: ollama
namespace: ollama
spec:
strategy:
type: Recreate
selector:
matchLabels:
name: ollama
template:
metadata:
labels:
name: ollama
spec:
containers:
- name: ollama
image: ollama/ollama:latest
env:
- name: PATH
value: /usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
- name: LD_LIBRARY_PATH
value: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
- name: NVIDIA_DRIVER_CAPABILITIES
value: compute,utility
ports:
- name: http
containerPort: 11434
protocol: TCP
resources:
limits:
nvidia.com/gpu: 1
tolerations:
- key: nvidia.com/gpu
operator: Exists
effect: NoSchedule
---
apiVersion: v1
kind: Service
metadata:
name: ollama
namespace: ollama
spec:
type: ClusterIP
selector:
name: ollama
ports:
- port: 80
name: http
targetPort: http
protocol: TCP
# LangChain Document QA
This example provides an interface for asking questions to a PDF document.
## Setup
1. Ensure you have the `llama3.2` model installed:
```
ollama pull llama3.2
```
2. Install the Python Requirements.
```
pip install -r requirements.txt
```
## Run
```
python main.py
```
A prompt will appear, where questions may be asked:
```
Query: How many locations does WeWork have?
```
from langchain_community.document_loaders import OnlinePDFLoader
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import GPT4AllEmbeddings
from langchain_core.prompts import PromptTemplate
from langchain_community.llms import Ollama
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chains import RetrievalQA
import sys
import os
class SuppressStdout:
def __enter__(self):
self._original_stdout = sys.stdout
self._original_stderr = sys.stderr
sys.stdout = open(os.devnull, 'w')
sys.stderr = open(os.devnull, 'w')
def __exit__(self, exc_type, exc_val, exc_tb):
sys.stdout.close()
sys.stdout = self._original_stdout
sys.stderr = self._original_stderr
# load the pdf and split it into chunks
loader = OnlinePDFLoader("https://d18rn0p25nwr6d.cloudfront.net/CIK-0001813756/975b3e9b-268e-4798-a9e4-2a9a7c92dc10.pdf")
data = loader.load()
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
with SuppressStdout():
vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings())
while True:
query = input("\nQuery: ")
if query == "exit":
break
if query.strip() == "":
continue
# Prompt
template = """Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
Use three sentences maximum and keep the answer as concise as possible.
{context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT = PromptTemplate(
input_variables=["context", "question"],
template=template,
)
llm = Ollama(model="llama3.2", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
qa_chain = RetrievalQA.from_chain_type(
llm,
retriever=vectorstore.as_retriever(),
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT},
)
result = qa_chain({"query": query})
absl-py==1.4.0
aiohttp==3.8.5
aiosignal==1.3.1
anyio==3.7.1
astunparse==1.6.3
async-timeout==4.0.3
attrs==23.1.0
backoff==2.2.1
beautifulsoup4==4.12.2
bs4==0.0.1
cachetools==5.3.1
certifi==2023.7.22
cffi==1.15.1
chardet==5.2.0
charset-normalizer==3.2.0
Chroma==0.2.0
chroma-hnswlib==0.7.2
chromadb==0.4.5
click==8.1.6
coloredlogs==15.0.1
cryptography==41.0.3
dataclasses-json==0.5.14
fastapi==0.99.1
filetype==1.2.0
flatbuffers==23.5.26
frozenlist==1.4.0
gast==0.4.0
google-auth==2.22.0
google-auth-oauthlib==1.0.0
google-pasta==0.2.0
gpt4all==1.0.8
grpcio==1.57.0
h11==0.14.0
h5py==3.9.0
httptools==0.6.0
humanfriendly==10.0
idna==3.4
importlib-resources==6.0.1
joblib==1.3.2
keras==2.13.1
langchain==0.0.261
langsmith==0.0.21
libclang==16.0.6
lxml==4.9.3
Markdown==3.4.4
MarkupSafe==2.1.3
marshmallow==3.20.1
monotonic==1.6
mpmath==1.3.0
multidict==6.0.4
mypy-extensions==1.0.0
nltk==3.8.1
numexpr==2.8.5
numpy==1.24.3
oauthlib==3.2.2
onnxruntime==1.15.1
openapi-schema-pydantic==1.2.4
opt-einsum==3.3.0
overrides==7.4.0
packaging==23.1
pdf2image==1.16.3
pdfminer==20191125
pdfminer.six==20221105
Pillow==10.0.0
posthog==3.0.1
protobuf==4.24.0
pulsar-client==3.2.0
pyasn1==0.5.0
pyasn1-modules==0.3.0
pycparser==2.21
pycryptodome==3.18.0
pydantic==1.10.12
PyPika==0.48.9
python-dateutil==2.8.2
python-dotenv==1.0.0
python-magic==0.4.27
PyYAML==6.0.1
regex==2023.8.8
requests==2.31.0
requests-oauthlib==1.3.1
rsa==4.9
six==1.16.0
sniffio==1.3.0
soupsieve==2.4.1
SQLAlchemy==2.0.19
starlette==0.27.0
sympy==1.12
tabulate==0.9.0
tenacity==8.2.2
tensorboard==2.13.0
tensorboard-data-server==0.7.1
tensorflow==2.13.0
tensorflow-estimator==2.13.0
tensorflow-hub==0.14.0
tensorflow-macos==2.13.0
termcolor==2.3.0
tokenizers==0.13.3
tqdm==4.66.1
typing-inspect==0.9.0
typing_extensions==4.5.0
unstructured==0.9.2
urllib3==1.26.16
uvicorn==0.23.2
uvloop==0.17.0
watchfiles==0.19.0
websockets==11.0.3
Werkzeug==2.3.6
wrapt==1.15.0
yarl==1.9.2
# OSX
.DS_STORE
# Models
models/
# Local Chroma db
.chroma/
db/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment