Commit 7e33a017 authored by Michael Yang's avatar Michael Yang
Browse files

partial offloading

parent 8b2c1006
......@@ -50,7 +50,7 @@ func HumanBytes(b int64) string {
}
}
func HumanBytes2(b int64) string {
func HumanBytes2(b uint64) string {
switch {
case b >= MebiByte:
return fmt.Sprintf("%.1f MiB", float64(b)/MebiByte)
......
......@@ -243,7 +243,7 @@ func getCPUMem() (memInfo, error) {
return ret, nil
}
func CheckVRAM() (int64, error) {
func CheckVRAM() (uint64, error) {
userLimit := os.Getenv("OLLAMA_MAX_VRAM")
if userLimit != "" {
avail, err := strconv.ParseInt(userLimit, 10, 64)
......@@ -251,11 +251,11 @@ func CheckVRAM() (int64, error) {
return 0, fmt.Errorf("Invalid OLLAMA_MAX_VRAM setting %s: %s", userLimit, err)
}
slog.Info(fmt.Sprintf("user override OLLAMA_MAX_VRAM=%d", avail))
return avail, nil
return uint64(avail), nil
}
gpuInfo := GetGPUInfo()
if gpuInfo.FreeMemory > 0 && (gpuInfo.Library == "cuda" || gpuInfo.Library == "rocm") {
return int64(gpuInfo.FreeMemory), nil
return gpuInfo.FreeMemory, nil
}
return 0, fmt.Errorf("no GPU detected") // TODO - better handling of CPU based memory determiniation
......
......@@ -17,7 +17,7 @@ import (
)
// CheckVRAM returns the free VRAM in bytes on Linux machines with NVIDIA GPUs
func CheckVRAM() (int64, error) {
func CheckVRAM() (uint64, error) {
userLimit := os.Getenv("OLLAMA_MAX_VRAM")
if userLimit != "" {
avail, err := strconv.ParseInt(userLimit, 10, 64)
......@@ -25,15 +25,14 @@ func CheckVRAM() (int64, error) {
return 0, fmt.Errorf("Invalid OLLAMA_MAX_VRAM setting %s: %s", userLimit, err)
}
slog.Info(fmt.Sprintf("user override OLLAMA_MAX_VRAM=%d", avail))
return avail, nil
return uint64(avail), nil
}
if runtime.GOARCH == "amd64" {
// gpu not supported, this may not be metal
return 0, nil
}
recommendedMaxVRAM := int64(C.getRecommendedMaxVRAM())
return recommendedMaxVRAM, nil
return uint64(C.getRecommendedMaxVRAM()), nil
}
func GetGPUInfo() GpuInfo {
......
......@@ -15,7 +15,7 @@ type GpuInfo struct {
Variant string `json:"variant,omitempty"`
// MinimumMemory represents the minimum memory required to use the GPU
MinimumMemory int64 `json:"-"`
MinimumMemory uint64 `json:"-"`
// TODO add other useful attributes about the card here for discovery information
}
......
......@@ -324,45 +324,52 @@ func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
}, offset, nil
}
func (llm GGML) GraphSize(context, batch int) (int64, bool) {
embeddingLength := llm.KV().EmbeddingLength()
headCount := llm.KV().HeadCount()
headCountKV := llm.KV().HeadCountKV()
vocabLength := len(llm.KV()["tokenizer.ggml.tokens"].([]any))
layers := llm.Tensors().Layers()
var attnQKVWeight1 uint64 = 0
if t, ok := layers["0"]["attn_qkv.weight"]; ok && len(t.Shape) > 2 {
attnQKVWeight1 = t.Shape[1]
}
var ffnGate0Weight1 uint64 = 0
if t, ok := layers["0"]["ffn_gate.0.weight"]; ok && len(t.Shape) > 2 {
ffnGate0Weight1 = t.Shape[1]
}
func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
embedding := llm.KV().EmbeddingLength()
heads := llm.KV().HeadCount()
headsKV := llm.KV().HeadCountKV()
vocab := uint64(len(llm.KV()["tokenizer.ggml.tokens"].([]any)))
switch llm.KV().Architecture() {
case "gemma", "command-r":
return 4 * int64(batch) * int64(embeddingLength+uint64(vocabLength)), true
case "phi2":
return max(
4*int64(batch)*int64(embeddingLength+uint64(vocabLength)),
4*int64(batch)*int64(1+4*embeddingLength+uint64(context)+attnQKVWeight1+uint64(context)*headCount),
), true
case "qwen2":
return max(
4*int64(batch)*int64(embeddingLength+uint64(vocabLength)),
4*int64(batch)*int64(1+2*embeddingLength+uint64(context)+uint64(context)*headCount),
), true
case "llama":
if ffnGate0Weight1 > 0 {
// moe
return 4 * int64(batch) * int64(2+3*embeddingLength+uint64(context)+uint64(context)*headCount+2*headCountKV+ffnGate0Weight1), true
}
fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
partialOffload = 4 * batch * embedding
partialOffload += max(
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV),
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
case "gemma":
fullOffload = 4 * batch * (embedding + vocab)
partialOffload = 4*batch*(2*embedding+vocab+1) + embedding*vocab*105/128
case "command-r":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(2+4*embedding+context*(1+heads)),
)
partialOffload = max(
4*batch*(embedding+vocab)+embedding*vocab*105/128,
4*batch*(1+2*embedding+context*(1+heads))+ 4*embedding*context+embedding*embedding*9/16,
)
case "qwen2":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(1+2*embedding+context+context*heads),
)
partialOffload = max(
4*batch*(embedding+vocab)+embedding*vocab*105/128,
4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
)
case "phi2":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(1+4*embedding+context+context*heads),
)
return 4 * int64(batch) * int64(1+4*embeddingLength+uint64(context)+uint64(context)*headCount), true
partialOffload = 4*batch*(2*embedding+vocab) + embedding*vocab*105/128
}
return 0, false
return
}
......@@ -41,10 +41,6 @@ var cpuOnlyFamilies = []string{
}
func NewLlamaServer(model string, adapters, projectors []string, opts api.Options) (*LlamaServer, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
f, err := os.Open(model)
if err != nil {
return nil, err
......@@ -65,12 +61,12 @@ func NewLlamaServer(model string, adapters, projectors []string, opts api.Option
opts.NumCtx = 4
}
availableMemory, _ := gpu.CheckVRAM()
memoryAvailable, _ := gpu.CheckVRAM()
info := gpu.GetGPUInfo()
usedMemory := info.MinimumMemory
memoryMinimum := info.MinimumMemory
for _, projector := range projectors {
usedMemory += projectorMemoryRequirements(projector)
memoryMinimum += projectorMemoryRequirements(projector)
// multimodal models require at least 2048 context
opts.NumCtx = max(opts.NumCtx, 2048)
......@@ -79,55 +75,65 @@ func NewLlamaServer(model string, adapters, projectors []string, opts api.Option
// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv
var kv uint64 = 2 * 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * ggml.KV().EmbeddingLength() / ggml.KV().HeadCount() * ggml.KV().HeadCountKV()
graph, ok := ggml.GraphSize(opts.NumCtx, min(opts.NumCtx, opts.NumBatch))
if !ok {
graph = int64(ggml.KV().GQA()*kv) / 6
graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
if graphPartialOffload == 0 {
graphPartialOffload = ggml.KV().GQA() * kv / 6
}
usedMemory += graph
if (usedMemory > availableMemory || slices.Contains(cpuOnlyFamilies, ggml.KV().Architecture())) && info.Library != "metal" {
info.Library = "cpu"
if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload
}
requiredMemory := usedMemory
// memoryRequiredTotal represents the memory required for full GPU offloading (all layers)
memoryRequiredTotal := memoryMinimum + graphFullOffload
tensorLayers := ggml.Tensors().Layers()
// memoryRequiredPartial represents the memory required for partial GPU offloading (n > 0, n < layers)
memoryRequiredPartial := memoryMinimum + graphPartialOffload
var layers int
if info.Library != "metal" {
if memoryRequiredPartial > memoryAvailable || slices.Contains(cpuOnlyFamilies, ggml.KV().Architecture()) {
info.Library = "cpu"
}
}
var layerCount int
layers := ggml.Tensors().Layers()
for i := 0; i < int(ggml.KV().BlockCount()); i++ {
layerMemory := int64(tensorLayers[fmt.Sprintf("%d", i)].size() + kv/ggml.KV().BlockCount())
requiredMemory += layerMemory
memoryLayer := layers[fmt.Sprintf("%d", i)].size()
// KV is proportional to the number of layers
memoryLayer += kv / ggml.KV().BlockCount()
if availableMemory > usedMemory+layerMemory && (opts.NumGPU < 0 || layers < opts.NumGPU) {
usedMemory += layerMemory
layers++
memoryRequiredTotal += memoryLayer
if memoryAvailable > memoryRequiredPartial+memoryLayer {
memoryRequiredPartial += memoryLayer
layerCount++
}
}
memOutputLayer := int64(tensorLayers["output"].size())
requiredMemory += memOutputLayer
memoryLayerOutput := layers["output"].size()
memoryRequiredTotal += memoryLayerOutput
if memoryAvailable > memoryRequiredTotal {
layerCount = int(ggml.KV().BlockCount()) + 1
memoryRequiredPartial = memoryRequiredTotal
}
// only offload output layer if all repeating layers are offloaded
if layers >= int(ggml.KV().BlockCount()) && availableMemory > usedMemory+memOutputLayer {
usedMemory += memOutputLayer
layers++
if opts.NumGPU < 0 {
opts.NumGPU = layerCount
}
slog.Info(
"offload to gpu",
"layers", layers,
"required", format.HumanBytes2(requiredMemory),
"used", format.HumanBytes2(usedMemory),
"available", format.HumanBytes2(availableMemory),
"kv", format.HumanBytes2(int64(kv)),
"graph", format.HumanBytes2(graph),
"reallayers", opts.NumGPU,
"layers", layerCount,
"required", format.HumanBytes2(memoryRequiredTotal),
"used", format.HumanBytes2(memoryRequiredPartial),
"available", format.HumanBytes2(memoryAvailable),
"kv", format.HumanBytes2(kv),
"fulloffload", format.HumanBytes2(graphFullOffload),
"partialoffload", format.HumanBytes2(graphPartialOffload),
)
if opts.NumGPU < 0 && info.Library != "cpu" {
opts.NumGPU = layers
}
if len(adapters) > 1 {
return nil, errors.New("ollama supports only one lora adapter, but multiple were provided")
}
......@@ -284,7 +290,7 @@ func NewLlamaServer(model string, adapters, projectors []string, opts api.Option
return nil, finalErr
}
func projectorMemoryRequirements(filename string) int64 {
func projectorMemoryRequirements(filename string) uint64 {
file, err := os.Open(filename)
if err != nil {
return 0
......@@ -301,7 +307,7 @@ func projectorMemoryRequirements(filename string) int64 {
mem += layer.size()
}
return int64(mem)
return mem
}
type ServerStatus int
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment