"README.md.src" did not exist on "1ef5cd2398f743687376b416e6469ce2e002b101"
Commit 5c5535c0 authored by Jesse Gross's avatar Jesse Gross Committed by Jesse Gross
Browse files

models: Prune unused outputs earlier in the forward pass

Currently Rows is called as the last step in a model computation
to get the values for the output tokens. However, if we move it
earlier in the process then we can trim out computations that
never get used. This is similar to how models are defined in
llama.cpp.

Changing the model definition in this way improves token generation
performance by approximately 8%.
parent e5bcc51a
......@@ -120,11 +120,19 @@ type Layer struct {
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
// In the final layer (outputs != nil), optimize by pruning to just the token positions
// we need logits for.
if outputs != nil {
hiddenState = hiddenState.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
......@@ -144,22 +152,26 @@ func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
return nil, err
}
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
hiddenState = layer.Forward(ctx, hiddenState, positions, m.Cache, m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
hiddenState = m.Output.Forward(ctx, hiddenState)
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
}
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
}
return hiddenState.Rows(ctx, outputs), nil
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState), nil
}
func init() {
......
......@@ -93,15 +93,13 @@ func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
return nil, err
}
// TODO: attention mask, cross attention mask
hiddenState := m.TextModel.Forward(ctx, inputs, positions, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache))
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
return hiddenState.Rows(ctx, outputs), nil
// TODO: attention mask, cross attention mask
return m.TextModel.Forward(ctx, inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
}
func init() {
......
......@@ -74,11 +74,19 @@ type TextSelfAttentionDecoderLayer struct {
MLP *TextMLP
}
func (d *TextSelfAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, positions, mask, _, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
func (d *TextSelfAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, positions, outputs, mask, _, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
residual := hiddenState
hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = d.SelfAttention.Forward(ctx, hiddenState, positions, mask, cache, opts)
// In the final layer (outputs != nil), optimize by pruning to just the token positions
// we need logits for.
if outputs != nil {
hiddenState = hiddenState.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
......@@ -145,7 +153,7 @@ type TextCrossAttentionDecoderLayer struct {
MLPGate ml.Tensor `gguf:"cross_attn_mlp_gate"`
}
func (d *TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _, _, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
func (d *TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _, _, _, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
residual := hiddenState
hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
......@@ -161,14 +169,14 @@ func (d *TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _,
}
type TextDecoderLayer interface {
Forward(ctx ml.Context, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor
Forward(ctx ml.Context, hiddenState, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor
}
type TextDecoder struct {
Layers []TextDecoderLayer
}
func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
for i, layer := range d.Layers {
layerType := selfAttentionLayer
if slices.Contains(opts.crossAttentionLayers, uint32(i)) {
......@@ -179,7 +187,12 @@ func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, mask, cr
cache.SetLayerType(layerType)
if layerType == selfAttentionLayer || crossAttentionStates != nil || cache.UnderlyingCache().(*kvcache.EncoderCache).EncoderCached() {
hiddenState = layer.Forward(ctx, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask, cache, opts)
var lastLayerOutputs ml.Tensor
if i == len(d.Layers)-1 {
lastLayerOutputs = outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positionIDs, lastLayerOutputs, mask, crossAttentionStates, crossAttentionMask, cache, opts)
}
}
......@@ -205,9 +218,9 @@ type TextModel struct {
*TextModelOptions
}
func (m *TextModel) Forward(ctx ml.Context, inputIDs, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache) ml.Tensor {
func (m *TextModel) Forward(ctx ml.Context, inputIDs, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputIDs)
hiddenState = m.Transformer.Forward(ctx, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask, cache, m.TextModelOptions)
hiddenState = m.Transformer.Forward(ctx, hiddenState, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask, cache, m.TextModelOptions)
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState)
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment