Unverified Commit 33ee7168 authored by Daniel Hiltgen's avatar Daniel Hiltgen Committed by GitHub
Browse files

Add experimental MLX backend and engine with imagegen support (#13648)



* WIP - MLX backend with gemma3

* MLX: add cmake and go tag build toggles

To build the new MLX backend code:
  cmake --preset MLX
  cmake --build --preset MLX --parallel
  cmake --install build --component MLX
  go build -tags mlx .

Note: the main.go entrypoint for the MLX engine will change in a follow up commit.

* add experimental image generation runtime

* add experimental image generation runtime

* MLX: wire up cuda build for linux

* MLX: get dependencies correct and dedup

This is still too large for a unified github artifact, but is now "correct" for the mlx_cuda_v13
directory.

* fix relative link bug in dedup

* Add darwin build and readme

* add go build tag for mlx dependent code and wire up build_darwin.sh

* lint cleanup

* macos: build mlx for x86

This will be CPU only.

* cuda build instructions and fix drift from mlx bump

* stale comment

* Delete agent helper doc

* Clean up readme.md

* Revise README for tokenizer clarity and details

Updated README to clarify tokenizer functionality and removed correctness section.

---------
Co-authored-by: default avatarjmorganca <jmorganca@gmail.com>
parent 34d0c55e
......@@ -34,7 +34,7 @@ type mllamaModel struct {
} `json:"vision_config"`
}
func (m *mllamaModel) KV(t *Tokenizer) ggml.KV {
func (m *mllamaModel) KV(t *Tokenizer) KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "mllama"
......
......@@ -87,7 +87,7 @@ func (p *nomicbertModel) parseMore(fsys fs.FS) error {
return nil
}
func (p *nomicbertModel) KV(t *Tokenizer) ggml.KV {
func (p *nomicbertModel) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
// Determine architecture based on MoE parameters (following qwen3 pattern)
......
......@@ -34,7 +34,7 @@ type olmoModel struct {
var _ ModelConverter = (*olmoModel)(nil)
func (p *olmoModel) KV(t *Tokenizer) ggml.KV {
func (p *olmoModel) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "olmo3"
kv["olmo3.block_count"] = p.NumHiddenLayers
......
......@@ -37,7 +37,7 @@ type phi3Model struct {
var _ ModelConverter = (*phi3Model)(nil)
func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
func (p *phi3Model) KV(t *Tokenizer) KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings
......
......@@ -22,7 +22,7 @@ type qwen2Model struct {
var _ ModelConverter = (*qwen2Model)(nil)
func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
func (q *qwen2Model) KV(t *Tokenizer) KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen2"
kv["qwen2.block_count"] = q.HiddenLayers
......
......@@ -29,7 +29,7 @@ type qwen25VLModel struct {
var _ ModelConverter = (*qwen25VLModel)(nil)
func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
func (q *qwen25VLModel) KV(t *Tokenizer) KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen25vl"
......
......@@ -32,7 +32,7 @@ type qwen3Model struct {
}
// KV implements ModelConverter.
func (q *qwen3Model) KV(t *Tokenizer) ggml.KV {
func (q *qwen3Model) KV(t *Tokenizer) KV {
arch := "qwen3"
if q.NumExperts > 0 {
arch += "moe"
......
......@@ -45,7 +45,7 @@ func (m *qwen3VLModel) parseMore(fsys fs.FS) error {
return json.Unmarshal(bts, &m.VisionModel)
}
func (m *qwen3VLModel) KV(t *Tokenizer) ggml.KV {
func (m *qwen3VLModel) KV(t *Tokenizer) KV {
kv := m.qwen3Model.KV(t)
arch := "qwen3vl"
......
......@@ -19,6 +19,7 @@ import (
"testing"
"github.com/google/go-cmp/cmp"
fsc "github.com/ollama/ollama/fs"
"github.com/ollama/ollama/fs/ggml"
)
......@@ -28,7 +29,7 @@ type tensorData struct {
Shape []int `json:"shape"`
}
func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
func convertFull(t *testing.T, fsys fs.FS) (*os.File, fsc.Config, ggml.Tensors) {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "f16")
......@@ -59,9 +60,10 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
return r, m.KV(), m.Tensors()
}
func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tensors) map[string]string {
func generateResultsJSON(t *testing.T, f *os.File, kv fsc.Config, tensors ggml.Tensors) map[string]string {
actual := make(map[string]string)
for k, v := range kv {
for k := range kv.Keys() {
v := kv.Value(k)
if s, ok := v.(json.Marshaler); !ok {
actual[k] = fmt.Sprintf("%v", v)
} else {
......@@ -277,7 +279,7 @@ func generateSafetensorTestData(t *testing.T, tempDir string, tensorData map[str
func TestConvertAdapter(t *testing.T) {
type AdapterCase struct {
Name string
BaseKV map[string]any
BaseKV KV
Expected map[string]string
}
......
package fs
import "iter"
type Config interface {
Architecture() string
String(string, ...string) string
......@@ -11,4 +13,8 @@ type Config interface {
Ints(string, ...[]int32) []int32
Floats(string, ...[]float32) []float32
Bools(string, ...[]bool) []bool
Len() int
Keys() iter.Seq[string]
Value(key string) any
}
......@@ -6,7 +6,9 @@ import (
"errors"
"fmt"
"io"
"iter"
"log/slog"
"maps"
"math"
"slices"
"strings"
......@@ -239,6 +241,18 @@ func (kv KV) Bools(key string, defaultValue ...[]bool) []bool {
return val.values
}
func (kv KV) Len() int {
return len(kv)
}
func (kv KV) Keys() iter.Seq[string] {
return maps.Keys(kv)
}
func (kv KV) Value(key string) any {
return kv[key]
}
func (kv KV) OllamaEngineRequired() bool {
return slices.Contains([]string{
"bert",
......
......@@ -8,12 +8,12 @@ import (
"fmt"
"io"
"log/slog"
"maps"
"os"
"runtime"
"slices"
"strings"
"github.com/ollama/ollama/fs"
"golang.org/x/sync/errgroup"
)
......@@ -508,7 +508,7 @@ func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
return binary.Write(w, binary.LittleEndian, s)
}
func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
func WriteGGUF(f *os.File, kv fs.Config, ts []*Tensor) error {
arch := kv.String("general.architecture")
if arch == "" {
return fmt.Errorf("architecture not set")
......@@ -526,12 +526,12 @@ func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
return err
}
if err := binary.Write(f, binary.LittleEndian, uint64(len(kv))); err != nil {
if err := binary.Write(f, binary.LittleEndian, uint64(kv.Len())); err != nil {
return err
}
for _, key := range slices.Sorted(maps.Keys(kv)) {
if err := ggufWriteKV(f, arch, key, kv[key]); err != nil {
for _, key := range slices.Sorted(kv.Keys()) {
if err := ggufWriteKV(f, arch, key, kv.Value(key)); err != nil {
return err
}
}
......
......@@ -21,6 +21,7 @@ import (
"golang.org/x/text/encoding/unicode"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/convert"
"github.com/ollama/ollama/fs/ggml"
)
......@@ -801,7 +802,7 @@ func createBinFile(t *testing.T, kv map[string]any, ti []*ggml.Tensor) (string,
}
defer f.Close()
base := map[string]any{"general.architecture": "test"}
var base convert.KV = map[string]any{"general.architecture": "test"}
maps.Copy(base, kv)
if err := ggml.WriteGGUF(f, base, ti); err != nil {
......
......@@ -42,18 +42,39 @@ shift $(( $OPTIND - 1 ))
_build_darwin() {
for ARCH in $ARCHS; do
status "Building darwin $ARCH"
INSTALL_PREFIX=dist/darwin-$ARCH/
GOOS=darwin GOARCH=$ARCH CGO_ENABLED=1 go build -o $INSTALL_PREFIX .
INSTALL_PREFIX=dist/darwin-$ARCH/
if [ "$ARCH" = "amd64" ]; then
status "Building darwin $ARCH dynamic backends"
cmake -B build/darwin-$ARCH \
BUILD_DIR=build/darwin-$ARCH
cmake -B $BUILD_DIR \
-DCMAKE_OSX_ARCHITECTURES=x86_64 \
-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 \
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
-DCMAKE_INSTALL_PREFIX=$INSTALL_PREFIX \
-DMLX_ENGINE=ON \
-DMLX_ENABLE_X64_MAC=ON \
-DOLLAMA_RUNNER_DIR=./
cmake --build $BUILD_DIR --target ggml-cpu -j
cmake --build $BUILD_DIR --target mlx mlxc -j
cmake --install $BUILD_DIR --component CPU
cmake --install $BUILD_DIR --component MLX
# Override CGO flags to point to the amd64 build directory
MLX_CGO_CFLAGS="-O3 -I$(pwd)/$BUILD_DIR/_deps/mlx-c-src -mmacosx-version-min=14.0"
MLX_CGO_LDFLAGS="-L$(pwd)/$BUILD_DIR/lib/ollama -lmlxc -lmlx -Wl,-rpath,@executable_path -lc++ -framework Accelerate -mmacosx-version-min=14.0"
else
BUILD_DIR=build
cmake --preset MLX \
-DOLLAMA_RUNNER_DIR=./ \
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
-DCMAKE_INSTALL_PREFIX=$INSTALL_PREFIX
cmake --build build/darwin-$ARCH --target ggml-cpu -j
cmake --install build/darwin-$ARCH --component CPU
cmake --build --preset MLX --parallel
cmake --install $BUILD_DIR --component MLX
# Use default CGO flags from mlx.go for arm64
MLX_CGO_CFLAGS="-O3 -I$(pwd)/$BUILD_DIR/_deps/mlx-c-src -mmacosx-version-min=14.0"
MLX_CGO_LDFLAGS="-L$(pwd)/$BUILD_DIR/lib/ollama -lmlxc -lmlx -Wl,-rpath,@executable_path -lc++ -framework Metal -framework Foundation -framework Accelerate -mmacosx-version-min=14.0"
fi
GOOS=darwin GOARCH=$ARCH CGO_ENABLED=1 CGO_CFLAGS="$MLX_CGO_CFLAGS" CGO_LDFLAGS="$MLX_CGO_LDFLAGS" go build -tags mlx -o $INSTALL_PREFIX/imagegen ./x/imagegen/cmd/engine
GOOS=darwin GOARCH=$ARCH CGO_ENABLED=1 go build -o $INSTALL_PREFIX .
done
}
......@@ -61,10 +82,12 @@ _sign_darwin() {
status "Creating universal binary..."
mkdir -p dist/darwin
lipo -create -output dist/darwin/ollama dist/darwin-*/ollama
lipo -create -output dist/darwin/imagegen dist/darwin-*/imagegen
chmod +x dist/darwin/ollama
chmod +x dist/darwin/imagegen
if [ -n "$APPLE_IDENTITY" ]; then
for F in dist/darwin/ollama dist/darwin-amd64/lib/ollama/*; do
for F in dist/darwin/ollama dist/darwin-*/lib/ollama/* dist/darwin/imagegen; do
codesign -f --timestamp -s "$APPLE_IDENTITY" --identifier ai.ollama.ollama --options=runtime $F
done
......@@ -131,17 +154,23 @@ _build_macapp() {
mkdir -p dist/Ollama.app/Contents/Resources
if [ -d dist/darwin-amd64 ]; then
lipo -create -output dist/Ollama.app/Contents/Resources/ollama dist/darwin-amd64/ollama dist/darwin-arm64/ollama
cp dist/darwin-amd64/lib/ollama/*.so dist/darwin-amd64/lib/ollama/*.dylib dist/Ollama.app/Contents/Resources/
lipo -create -output dist/Ollama.app/Contents/Resources/imagegen dist/darwin-amd64/imagegen dist/darwin-arm64/imagegen
for F in dist/darwin-amd64/lib/ollama/*mlx*.dylib ; do
lipo -create -output dist/darwin/$(basename $F) $F dist/darwin-arm64/lib/ollama/$(basename $F)
done
cp dist/darwin-*/lib/ollama/*.so dist/darwin-*/lib/ollama/*.dylib dist/Ollama.app/Contents/Resources/
cp dist/darwin/*.dylib dist/Ollama.app/Contents/Resources/
else
cp -a dist/darwin/ollama dist/Ollama.app/Contents/Resources/ollama
cp dist/darwin/*.so dist/darwin/*.dylib dist/Ollama.app/Contents/Resources/
fi
cp -a dist/darwin/imagegen dist/Ollama.app/Contents/Resources/imagegen
chmod a+x dist/Ollama.app/Contents/Resources/ollama
# Sign
if [ -n "$APPLE_IDENTITY" ]; then
codesign -f --timestamp -s "$APPLE_IDENTITY" --identifier ai.ollama.ollama --options=runtime dist/Ollama.app/Contents/Resources/ollama
for lib in dist/Ollama.app/Contents/Resources/*.so dist/Ollama.app/Contents/Resources/*.dylib ; do
for lib in dist/Ollama.app/Contents/Resources/*.so dist/Ollama.app/Contents/Resources/*.dylib dist/Ollama.app/Contents/Resources/imagegen ; do
codesign -f --timestamp -s "$APPLE_IDENTITY" --identifier ai.ollama.ollama --options=runtime ${lib}
done
codesign -f --timestamp -s "$APPLE_IDENTITY" --identifier com.electron.ollama --deep --options=runtime dist/Ollama.app
......@@ -149,7 +178,7 @@ _build_macapp() {
rm -f dist/Ollama-darwin.zip
ditto -c -k --keepParent dist/Ollama.app dist/Ollama-darwin.zip
(cd dist/Ollama.app/Contents/Resources/; tar -cf - ollama *.so *.dylib) | gzip -9vc > dist/ollama-darwin.tgz
(cd dist/Ollama.app/Contents/Resources/; tar -cf - ollama imagegen *.so *.dylib) | gzip -9vc > dist/ollama-darwin.tgz
# Notarize and Staple
if [ -n "$APPLE_IDENTITY" ]; then
......
......@@ -48,6 +48,55 @@ if echo $PLATFORM | grep "amd64" > /dev/null; then
.
fi
# Deduplicate CUDA libraries across mlx_* and cuda_* directories
deduplicate_cuda_libs() {
local base_dir="$1"
echo "Deduplicating CUDA libraries in ${base_dir}..."
# Find all mlx_cuda_* directories
for mlx_dir in "${base_dir}"/lib/ollama/mlx_cuda_*; do
[ -d "${mlx_dir}" ] || continue
# Extract CUDA version (e.g., v12, v13)
cuda_version=$(basename "${mlx_dir}" | sed 's/mlx_cuda_//')
cuda_dir="${base_dir}/lib/ollama/cuda_${cuda_version}"
# Skip if corresponding cuda_* directory doesn't exist
[ -d "${cuda_dir}" ] || continue
echo " Checking ${mlx_dir} against ${cuda_dir}..."
# Find all .so* files in mlx directory
find "${mlx_dir}" -type f -name "*.so*" | while read mlx_file; do
filename=$(basename "${mlx_file}")
cuda_file="${cuda_dir}/${filename}"
# Skip if file doesn't exist in cuda directory
[ -f "${cuda_file}" ] || continue
# Compare checksums
mlx_sum=$(sha256sum "${mlx_file}" | awk '{print $1}')
cuda_sum=$(sha256sum "${cuda_file}" | awk '{print $1}')
if [ "${mlx_sum}" = "${cuda_sum}" ]; then
echo " Deduplicating ${filename}"
# Calculate relative path from mlx_dir to cuda_dir
rel_path="../cuda_${cuda_version}/${filename}"
rm -f "${mlx_file}"
ln -s "${rel_path}" "${mlx_file}"
fi
done
done
}
# Run deduplication for each platform output directory
if echo $PLATFORM | grep "," > /dev/null ; then
deduplicate_cuda_libs "./dist/linux_amd64"
deduplicate_cuda_libs "./dist/linux_arm64"
elif echo $PLATFORM | grep "amd64\|arm64" > /dev/null ; then
deduplicate_cuda_libs "./dist"
fi
# buildx behavior changes for single vs. multiplatform
echo "Compressing linux tar bundles..."
if echo $PLATFORM | grep "," > /dev/null ; then
......
......@@ -26,6 +26,7 @@ import (
"github.com/ollama/ollama/convert"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
ofs "github.com/ollama/ollama/fs"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/errtypes"
......@@ -454,7 +455,7 @@ func convertFromSafetensors(files map[string]string, baseLayers []*layerGGML, is
return layers, nil
}
func kvFromLayers(baseLayers []*layerGGML) (ggml.KV, error) {
func kvFromLayers(baseLayers []*layerGGML) (ofs.Config, error) {
for _, l := range baseLayers {
if l.GGML != nil {
return l.KV(), nil
......
......@@ -22,6 +22,7 @@ import (
gocmpopts "github.com/google/go-cmp/cmp/cmpopts"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/convert"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/types/model"
......@@ -41,7 +42,7 @@ func createBinFile(t *testing.T, kv map[string]any, ti []*ggml.Tensor) (string,
}
defer f.Close()
base := map[string]any{"general.architecture": "test"}
var base convert.KV = map[string]any{"general.architecture": "test"}
maps.Copy(base, kv)
if err := ggml.WriteGGUF(f, base, ti); err != nil {
......
# Experimental Features
## MLX Backend
We're working on a new experimental backend based on the [MLX project](https://github.com/ml-explore/mlx)
Support is currently limited to MacOS and Linux with CUDA GPUs. We're looking to add support for Windows CUDA soon, and other GPU vendors. To build:
```
cmake --preset MLX
cmake --build --preset MLX --parallel
cmake --install --component MLX
go build -tags mlx .
```
On linux, use the preset "MLX CUDA 13" or "MLX CUDA 12" to enable CUDA with the default Ollama NVIDIA GPU architectures enabled.
## Image Generation
Based on the experimental MLX backend, we're working on adding imagegen support. After running the cmake commands above:
```
go build -o imagegen ./x/imagegen/cmd/engine
```
# Build directories
build/
dist/
# CMake
CMakeCache.txt
CMakeFiles/
cmake_install.cmake
Makefile
*.cmake
# IDE
.idea/
.vscode/
*.swp
*.swo
*~
# macOS
.DS_Store
*.dSYM/
# Go
*.exe
*.exe~
*.dll
*.so
*.dylib
# Python
*.npy
/engine
weights
outputs
prompt.txt
negative.txt
# imagegen
This is a package that uses MLX to run image generation models, ahead of being integrated into Ollama's primary runner.
in `CMakeLists.txt` and rebuild.
### 1. Download a Model
Download Llama 3.1 8B (or any compatible model) in safetensors format:
```bash
mkdir -p ./weights
# Example using huggingface-cli
hf download meta-llama/Llama-3.1-8B --local-dir ./weights/Llama-3.1-8B
hf download openai/gpt-oss-20b --local-dir ./weights/gpt-oss-20b
```
### 2. Run Inference
```bash
# Build
go build ./cmd/engine
# Text generation
./engine -model ./weights/Llama-3.1-8B -prompt "Hello, world!" -max-tokens 250
# Qwen-Image 2512 (text-to-image)
./engine -qwen-image -model ./weights/Qwen-Image-2512 -prompt "A mountain landscape at sunset" \
-width 1024 -height 1024 -steps 20 -seed 42 -output landscape.png
# Qwen-Image Edit (experimental) - 8 steps for speed, but model recommends 50
./engine -qwen-image-edit -model ./weights/Qwen-Image-Edit-2511 \
-input-image input.png -prompt "Make it winter" -negative-prompt " " -cfg-scale 4.0 \
-steps 8 -seed 42 -output edited.png
```
## Memory Management
MLX Python/C++ uses scope-based memory management - arrays are freed when they go out of scope. Go's garbage collector is non-deterministic, so we can't rely on finalizers to free GPU memory promptly.
Instead, arrays are automatically tracked and freed on `Eval()`:
```go
// All arrays are automatically tracked when created
x := mlx.Add(a, b)
y := mlx.Matmul(x, w)
// Eval frees non-kept arrays, evaluates outputs (auto-kept)
mlx.Eval(y)
// After copying to CPU, free the array
data := y.Data()
y.Free()
```
Key points:
- All created arrays are automatically tracked
- `mlx.Eval(outputs...)` frees non-kept arrays, evaluates outputs (outputs auto-kept)
- `mlx.Keep(arrays...)` marks arrays to survive multiple Eval cycles (for weights, caches)
- Call `.Free()` when done with an array
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment