Unverified Commit 0cefd46f authored by Jeffrey Morgan's avatar Jeffrey Morgan Committed by GitHub
Browse files

llama: update to commit de4c07f93 (#10655)

parent ad035ad5
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=e1e8e0991ffd9e99a445c6812bb519d5bac9f4b5
FETCH_HEAD=de4c07f93783a1a96456a44dc16b9db538ee1618
.PHONY: help
help:
......
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "e1e8e0991ffd9e99a445c6812bb519d5bac9f4b5";
char const *LLAMA_COMMIT = "de4c07f93783a1a96456a44dc16b9db538ee1618";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";
......@@ -10,11 +10,11 @@ include common/stb_image.*
include include/
include include/llama.*
include include/llama-*.*
include examples/
include examples/llava/
include examples/llava/clip.*
include examples/llava/clip-impl.*
include examples/llava/llava.*
include tools/
include tools/mtmd/
include tools/mtmd/clip.*
include tools/mtmd/clip-impl.*
include tools/mtmd/llava.*
include src/
include src/llama.*
include src/llama-*.*
......
......@@ -1096,7 +1096,6 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.n_threads = params.cpuparams.n_threads;
cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
cparams.logits_all = params.logits_all;
cparams.embeddings = params.embedding;
cparams.rope_scaling_type = params.rope_scaling_type;
cparams.rope_freq_base = params.rope_freq_base;
......@@ -1114,6 +1113,7 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.offload_kqv = !params.no_kv_offload;
cparams.flash_attn = params.flash_attn;
cparams.no_perf = params.no_perf;
cparams.op_offload = !params.no_op_offload;
if (params.reranking) {
cparams.embeddings = true;
......@@ -1565,3 +1565,20 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
return result;
}
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride) {
const int64_t ne_datapoint = llama_n_ctx(ctx);
const int64_t ndata = (tokens.size() - ne_datapoint - 1) / stride;
ggml_opt_dataset_t result = ggml_opt_dataset_init(
GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, /*ndata_shard =*/ 1);
llama_token * data = (llama_token *) ggml_opt_dataset_data(result)->data;
llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data;
for (int64_t idata = 0; idata < ndata; ++idata) {
memcpy(data + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token));
memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token));
}
return result;
}
......@@ -66,7 +66,6 @@ enum llama_example {
LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_MAIN,
LLAMA_EXAMPLE_INFILL,
LLAMA_EXAMPLE_EMBEDDING,
LLAMA_EXAMPLE_PERPLEXITY,
LLAMA_EXAMPLE_RETRIEVAL,
......@@ -96,6 +95,7 @@ enum common_sampler_type {
COMMON_SAMPLER_TYPE_XTC = 8,
COMMON_SAMPLER_TYPE_INFILL = 9,
COMMON_SAMPLER_TYPE_PENALTIES = 10,
COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
};
// dimensionality reduction methods, used by cvector-generator
......@@ -161,6 +161,7 @@ struct common_params_sampling {
std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_PENALTIES,
COMMON_SAMPLER_TYPE_DRY,
COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
COMMON_SAMPLER_TYPE_TOP_K,
COMMON_SAMPLER_TYPE_TYPICAL_P,
COMMON_SAMPLER_TYPE_TOP_P,
......@@ -323,7 +324,6 @@ struct common_params {
bool ctx_shift = true; // context shift on inifinite text generation
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool verbose_prompt = false; // print prompt tokens before generation
......@@ -332,6 +332,7 @@ struct common_params {
bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
bool no_op_offload = false; // globally disable offload host tensor operations to device
bool single_turn = false; // single turn chat conversation
......@@ -340,7 +341,7 @@ struct common_params {
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
// multimodal models (see examples/llava)
// multimodal models (see tools/mtmd)
struct common_params_model mmproj;
bool mmproj_use_gpu = true; // use GPU for multimodal model
bool no_mmproj = false; // explicitly disable multimodal model
......@@ -409,13 +410,14 @@ struct common_params {
bool process_output = false; // collect data for the output tensor
bool compute_ppl = true; // whether to compute perplexity
bool parse_special = false; // whether to parse special tokens during imatrix tokenization
// cvector-generator params
int n_pca_batch = 100;
int n_pca_iterations = 1000;
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
std::string cvector_positive_file = "tools/cvector-generator/positive.txt";
std::string cvector_negative_file = "tools/cvector-generator/negative.txt";
bool spm_infill = false; // suffix/prefix/middle pattern for infill
......@@ -664,3 +666,9 @@ const char * const LLM_KV_SPLIT_COUNT = "split.count";
const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
}
//
// training utils
//
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);
#include "sampling.h"
#include "common.h"
#include "log.h"
#include <cmath>
#include <unordered_map>
......@@ -229,51 +230,48 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
params.logit_bias.data()));
if (params.mirostat == 0) {
if (params.top_n_sigma >= 0) {
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
} else {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
......@@ -475,6 +473,7 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
case COMMON_SAMPLER_TYPE_XTC: return 'x';
......@@ -490,6 +489,7 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
......@@ -504,6 +504,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
{ "dry", COMMON_SAMPLER_TYPE_DRY },
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
{ "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
......@@ -517,6 +518,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
{ "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
......@@ -533,14 +535,16 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
auto sampler = sampler_canonical_name_map.find(name);
if (sampler != sampler_canonical_name_map.end()) {
samplers.push_back(sampler->second);
} else {
if (allow_alt_names) {
sampler = sampler_alt_name_map.find(name);
if (sampler != sampler_alt_name_map.end()) {
samplers.push_back(sampler->second);
}
continue;
}
if (allow_alt_names) {
sampler = sampler_alt_name_map.find(name);
if (sampler != sampler_alt_name_map.end()) {
samplers.push_back(sampler->second);
continue;
}
}
LOG_WRN("%s: unable to match sampler by name '%s'\n", __func__, name.c_str());
}
return samplers;
......@@ -552,6 +556,7 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
......@@ -566,6 +571,8 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
const auto sampler = sampler_name_map.find(c);
if (sampler != sampler_name_map.end()) {
samplers.push_back(sampler->second);
} else {
LOG_WRN("%s: unable to match sampler by char '%c'\n", __func__, c);
}
}
......
......@@ -4,6 +4,7 @@
#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-backend.h"
#include "ggml-opt.h"
#include <stddef.h>
#include <stdint.h>
......@@ -112,6 +113,7 @@ extern "C" {
LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32,
LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33,
LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34,
LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35,
};
enum llama_rope_type {
......@@ -352,20 +354,19 @@ extern "C" {
enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
// Abort callback
// if it returns true, execution of llama_decode() will be aborted
// currently works only with CPU execution
ggml_abort_callback abort_callback;
void * abort_callback_data;
// Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
// TODO: move at the end of the struct
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
bool embeddings; // if true, extract embeddings (together with logits)
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
bool no_perf; // whether to measure performance timings
bool op_offload; // whether to offload host tensor operations to device
bool cross_attn; // whether to use cross attention
// Abort callback
// if it returns true, execution of llama_decode() will be aborted
// currently works only with CPU execution
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
// model quantization parameters
......@@ -447,6 +448,10 @@ extern "C" {
size_t n_paths,
struct llama_model_params params);
LLAMA_API void llama_model_save_to_file(
const struct llama_model * model,
const char * path_model);
DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model),
"use llama_model_free instead");
......@@ -930,14 +935,19 @@ extern "C" {
// Frees a batch of tokens allocated with llama_batch_init()
LLAMA_API void llama_batch_free(struct llama_batch batch);
// Processes a batch of tokens with the ecoder part of the encoder-decoder model.
// Stores the encoder output internally for later use by the decoder cross-attention layers.
// Process a batch of tokens.
// In contrast to llama_decode() - this call does not use KV cache.
// For encode-decoder contexts, processes the batch using the encoder.
// Can store the encoder output internally for later use by the decoder's cross-attention layers.
// 0 - success
// < 0 - error. the KV cache state is restored to the state before this call
LLAMA_API int32_t llama_encode(
struct llama_context * ctx,
struct llama_batch batch);
// Process a batch of tokens.
// Requires KV cache.
// For encode-decoder contexts, processes the batch using the decoder.
// Positive return values does not mean a fatal error, but rather a warning.
// 0 - success
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
......@@ -1434,6 +1444,37 @@ extern "C" {
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
//
// training
//
// function that returns whether or not a given tensor contains trainable parameters
typedef bool (*llama_opt_param_filter)(const struct ggml_tensor * tensor, void * userdata);
// always returns true
LLAMA_API bool llama_opt_param_filter_all(const struct ggml_tensor * tensor, void * userdata);
struct llama_opt_params {
uint32_t n_ctx_train; // assumed context size post training, use context size specified in llama_context if 0
llama_opt_param_filter param_filter; // callback for determining which tensors contain trainable parameters
void * param_filter_ud; // userdata for determining which tensors contain trainable parameters
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
};
LLAMA_API void llama_opt_init(struct llama_context * lctx, struct llama_model * model, struct llama_opt_params lopt_params);
LLAMA_API void llama_opt_epoch(
struct llama_context * lctx,
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train,
ggml_opt_result_t result_eval,
int64_t idata_split,
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval);
#ifdef __cplusplus
}
#endif
......
......@@ -253,6 +253,9 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
std::vector<ggml_backend_buffer_type_t> buft_extra;
{
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!cpu_dev) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
......@@ -291,6 +294,9 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
LLAMA_LOG_WARN("%s: lora for '%s' cannot use buft '%s', fallback to CPU\n", __func__, model_tensor->name, ggml_backend_buft_name(buft));
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (!cpu_dev) {
throw std::runtime_error(format("%s: no CPU backend found", __func__));
}
buft = ggml_backend_dev_buffer_type(cpu_dev);
break;
......
......@@ -189,7 +189,7 @@ llama_ubatch llama_sbatch::split_seq(size_t n_ubatch) {
return ubatch;
}
void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
llama_sbatch::llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
GGML_ASSERT(batch.n_tokens >= 0);
this->batch = &batch;
this->n_embd = n_embd;
......@@ -203,6 +203,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
for (size_t i = 0; i < n_tokens; ++i) {
ids[i] = i;
}
if (simple_split) {
seq.resize(1);
llama_sbatch_seq & s = seq[0];
......@@ -212,6 +213,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
s.length = n_tokens;
return;
}
std::sort(ids.begin(), ids.end(),
[&batch](size_t a, size_t b) {
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
......@@ -239,6 +241,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
return n_seq_a > n_seq_b;
}
);
// init seq
llama_sbatch_seq * last_seq = nullptr;
......@@ -262,6 +265,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
seq.push_back(new_seq);
last_seq = &seq.back();
}
// keep shared prompts first at the end, then sort by length descending.
std::sort(seq.begin(), seq.end(),
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
......
......@@ -70,7 +70,8 @@ struct llama_sbatch {
// sequence-wise split
llama_ubatch split_seq(size_t n_ubatch);
void from_batch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
llama_sbatch() = default;
llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
};
// temporary allocate memory for the input batch if needed
......
......@@ -35,6 +35,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
{ "mistral-v7-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN },
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
{ "phi4", LLM_CHAT_TEMPLATE_PHI_4 },
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
......@@ -202,19 +203,20 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "<|im_start|>assistant\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) {
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7 || tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN) {
// Official mistral 'v7' template
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
// https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503#basic-instruct-template-v7-tekken
const char * trailing_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7 ? " " : "";
for (auto message : chat) {
std::string role(message->role);
std::string content(message->content);
if (role == "system") {
ss << "[SYSTEM_PROMPT] " << content << "[/SYSTEM_PROMPT]";
ss << "[SYSTEM_PROMPT]" << trailing_space << content << "[/SYSTEM_PROMPT]";
} else if (role == "user") {
ss << "[INST] " << content << "[/INST]";
}
else {
ss << " " << content << "</s>";
ss << "[INST]" << trailing_space << content << "[/INST]";
} else {
ss << trailing_space << content << "</s>";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
......@@ -447,8 +449,16 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_4 || tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_4) {
ss << "[gMASK]" << "<sop>";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;
......
......@@ -14,6 +14,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_MISTRAL_V3,
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
LLM_CHAT_TEMPLATE_MISTRAL_V7,
LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN,
LLM_CHAT_TEMPLATE_PHI_3,
LLM_CHAT_TEMPLATE_PHI_4,
LLM_CHAT_TEMPLATE_FALCON_3,
......
......@@ -6,11 +6,9 @@
#include "llama-model.h"
#include "llama-kv-cache.h"
#include <cassert>
#include <cstring>
#include <stdexcept>
#include <cinttypes>
#include <cmath>
//
// llama_context
......@@ -95,6 +93,7 @@ llama_context::llama_context(
}
cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
cparams.op_offload = params.op_offload;
const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
......@@ -118,8 +117,6 @@ llama_context::llama_context(
__func__, n_ctx_per_seq, hparams.n_ctx_train);
}
logits_all = params.logits_all;
if (!hparams.vocab_only) {
// GPU backends
for (auto * dev : model.devices) {
......@@ -177,44 +174,13 @@ llama_context::llama_context(
}
// init the memory module
// TODO: for now, always create a unified KV cache
if (!hparams.vocab_only) {
kv_self.reset(static_cast<llama_kv_cache_unified *>(model.create_memory()));
LLAMA_LOG_DEBUG("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
cparams.n_ctx = GGML_PAD(cparams.n_ctx, kv_self->get_padding(cparams));
LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
uint32_t kv_size = cparams.n_ctx;
ggml_type type_k = params.type_k;
ggml_type type_v = params.type_v;
if (llama_model_is_recurrent(&model)) {
// Mamba needs at least as many KV cells as there are sequences kept at any time
kv_size = std::max((uint32_t) 1, params.n_seq_max);
// it's probably best to keep as much precision as possible for the states
type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
}
GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
if (!kv_self->init(model, cparams, type_k, type_v, kv_size, cparams.offload_kqv)) {
throw std::runtime_error("failed to initialize self-attention cache");
}
{
const size_t memory_size_k = kv_self->size_k_bytes();
const size_t memory_size_v = kv_self->size_v_bytes();
llama_memory_params params_mem = {
/*.type_k =*/ params.type_k,
/*.type_v =*/ params.type_v,
};
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
}
memory.reset(model.create_memory(params_mem, cparams));
}
// init backends
......@@ -278,7 +244,7 @@ llama_context::llama_context(
}
}
sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, pipeline_parallel));
sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, pipeline_parallel, cparams.op_offload));
if (pipeline_parallel) {
LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(sched.get()));
......@@ -286,7 +252,7 @@ llama_context::llama_context(
}
// reserve worst-case graph
if (!hparams.vocab_only) {
if (!hparams.vocab_only && memory) {
const uint32_t n_seqs = 1; // TODO: worst-case number of sequences
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
......@@ -305,7 +271,9 @@ llama_context::llama_context(
int n_nodes_tg = -1;
// simulate full KV cache
kv_self->n = kv_self->size;
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->set_full();
cross.v_embd.clear();
......@@ -391,7 +359,9 @@ llama_context::llama_context(
}
}
llama_context::~llama_context() = default;
llama_context::~llama_context() {
ggml_opt_free(opt_ctx);
}
void llama_context::synchronize() {
ggml_backend_sched_synchronize(sched.get());
......@@ -427,6 +397,18 @@ const llama_model & llama_context::get_model() const {
return model;
}
const llama_cparams & llama_context::get_cparams() const {
return cparams;
}
ggml_backend_sched_t llama_context::get_sched() const {
return sched.get();
}
ggml_context * llama_context::get_ctx_compute() const {
return ctx_compute.get();
}
uint32_t llama_context::n_ctx() const {
return cparams.n_ctx;
}
......@@ -456,318 +438,44 @@ uint32_t llama_context::n_threads_batch() const {
}
llama_kv_cache * llama_context::get_kv_self() {
return kv_self.get();
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
return kv_self;
}
const llama_kv_cache * llama_context::get_kv_self() const {
return kv_self.get();
}
ggml_tensor * llama_context::build_rope_shift(
ggml_context * ctx0,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale) const {
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
const auto & hparams = model.hparams;
const auto & n_rot = hparams.n_rot;
const auto & rope_type = hparams.rope_type;
// See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor;
ggml_tensor * tmp;
if (ggml_is_quantized(cur->type)) {
// dequantize to f32 -> RoPE -> quantize back
tmp = ggml_cast(ctx0, cur, GGML_TYPE_F32);
tmp = ggml_rope_ext(ctx0, tmp,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
tmp = ggml_cpy(ctx0, tmp, cur);
} else {
// we rotate only the first n_rot dimensions
tmp = ggml_rope_ext_inplace(ctx0, cur,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
}
return tmp;
}
class llm_graph_input_k_shift : public llm_graph_input_i {
public:
llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_k_shift() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * k_shift; // I32 [kv_size]
const llama_kv_cache_unified * kv_self;
};
void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
GGML_UNUSED(ubatch);
if (k_shift) {
assert(ggml_backend_buffer_is_host(k_shift->buffer));
int32_t * data = (int32_t *) k_shift->data;
for (uint32_t i = 0; i < kv_self->size; ++i) {
data[i] = kv_self->cells[i].delta;
}
}
}
llm_graph_result_ptr llama_context::build_kv_self_shift(
ggml_context * ctx0,
ggml_cgraph * gf) const {
auto res = std::make_unique<llm_graph_result>();
const auto & hparams = model.hparams;
const auto & n_layer = hparams.n_layer;
const auto & n_embd_head_k = hparams.n_embd_head_k;
//const auto & n_embd_head_v = hparams.n_embd_head_v;
//GGML_ASSERT(kv_self->size == n_ctx);
auto inp = std::make_unique<llm_graph_input_k_shift>(kv_self.get());
inp->k_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_ctx);
ggml_set_input(inp->k_shift);
for (uint32_t il = 0; il < n_layer; ++il) {
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const bool is_swa = hparams.is_swa(il);
// note: the swa rope params could become part of the cparams in the future
// if we decide to make them configurable, like the non-sliding ones
const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
ggml_tensor * rope_factors = kv_self->cbs.get_rope_factors(n_ctx_per_seq(), il);
ggml_tensor * k =
ggml_view_3d(ctx0, kv_self->k_l[il],
n_embd_head_k, n_head_kv, kv_self->size,
ggml_row_size(kv_self->k_l[il]->type, n_embd_head_k),
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
0);
ggml_tensor * cur = build_rope_shift(ctx0, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
ggml_build_forward_expand(gf, cur);
}
res->add_input(std::move(inp));
return res;
}
llm_graph_result_ptr llama_context::build_kv_self_defrag(
ggml_context * ctx0,
ggml_cgraph * gf,
const std::vector<struct llama_kv_defrag_move> & moves) const {
auto res = std::make_unique<llm_graph_result>();
const auto & hparams = model.hparams;
#if 0
// CPU defrag
//
// TODO: optimizations are possible:
// - multiple threads
// - avoid copying to the host memory when already there
//
// likely not worth the effort, as we have ggml_graph based defrag
//
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
const uint32_t kv_size = size;
std::vector<uint8_t> buf_k;
std::vector<uint8_t> buf_v;
for (uint32_t il = 0; il < n_layer; ++il) {
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
const size_t v_size_el = ggml_type_size(v_l[il]->type);
const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
buf_k.resize(k_size);
buf_v.resize(v_size);
ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
// batch move [i, i+nm) to [id, id+nm)
// note: cells can move only to a lower index
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t id = ids[i];
if (i == id || id == n_kv) {
continue;
}
uint32_t nm = 1;
while (i + nm < n_kv && ids[i + nm] == id + nm) {
nm++;
}
// move keys
{
const int64_t os = i*k_size_row;
const int64_t od = id*k_size_row;
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
}
// move values (note: they are transposed)
{
const int64_t os = i;
const int64_t od = id;
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
}
}
i += nm - 1;
}
ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
}
#else
for (const auto & move : moves) {
for (uint32_t il = 0; il < hparams.n_layer; ++il) { // NOLINT
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self->k_l[il],
n_embd_k_gqa, move.len,
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa*move.src));
ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self->k_l[il],
n_embd_k_gqa, move.len,
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa*move.dst));
ggml_tensor * view_v_src;
ggml_tensor * view_v_dst;
if (cparams.flash_attn) {
// NOTE: the V cache is not transposed when using flash attention
view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il],
n_embd_v_gqa, move.len,
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa*move.src));
view_v_dst = ggml_view_2d(ctx0, kv_self->v_l[il],
n_embd_v_gqa, move.len,
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa*move.dst));
} else {
view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il],
move.len, n_embd_v_gqa,
ggml_row_size(kv_self->v_l[il]->type, kv_self->size),
ggml_row_size(kv_self->v_l[il]->type, move.src));
view_v_dst = ggml_view_2d(ctx0, kv_self->v_l[il],
move.len, n_embd_v_gqa,
ggml_row_size(kv_self->v_l[il]->type, kv_self->size),
ggml_row_size(kv_self->v_l[il]->type, move.dst));
}
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
}
}
#endif
return res;
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
return kv_self;
}
void llama_context::kv_self_update() {
auto & kv = kv_self;
bool need_reserve = false;
if (kv->has_shift) {
if (!kv->get_can_shift()) {
GGML_ABORT("The current context does not support K-shift");
}
LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
// apply K-shift if needed
if (model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
ggml_backend_sched_reset(sched.get());
auto * gf = graph_init();
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
auto res = build_kv_self_shift(ctx_compute.get(), gf);
need_reserve = kv_self->update(*this);
ggml_backend_sched_alloc_graph(sched.get(), gf);
// reserve a worst case graph if needed
if (need_reserve) {
LLAMA_LOG_DEBUG("%s: reserving a worst case graph\n", __func__);
res->set_inputs(nullptr);
// build worst-case graph
uint32_t n_seqs = 1; // TODO: worst-case number of sequences
uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
graph_compute(gf, false);
}
{
kv->has_shift = false;
for (uint32_t i = 0; i < kv->size; ++i) {
kv->cells[i].delta = 0;
}
}
}
// simulate full KV cache
kv_self->set_full();
// defragment the KV cache if needed
if (kv->do_defrag) {
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
const uint32_t n_max_nodes = graph_max_nodes();
const uint32_t max_moves = (n_max_nodes - 2*model.hparams.n_layer)/(6*model.hparams.n_layer);
if (!kv->defrag_prepare(n_max_nodes)) {
LLAMA_LOG_ERROR("%s: failed to prepare defragmentation\n", __func__);
return;
}
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
for (std::size_t i = 0; i < kv_self->defrag_info.moves.size(); i += max_moves) {
std::vector<struct llama_kv_defrag_move> chunk;
auto end = std::min(i + max_moves, kv_self->defrag_info.moves.size());
chunk.assign(kv_self->defrag_info.moves.begin() + i, kv_self->defrag_info.moves.begin() + end);
auto * gf = graph_init();
graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT);
ggml_backend_sched_reset(sched.get());
auto * gf = graph_init();
auto res = build_kv_self_defrag(ctx_compute.get(), gf, chunk);
ggml_backend_sched_alloc_graph(sched.get(), gf);
res->set_inputs(nullptr);
graph_compute(gf, false);
// initialize scheduler with the worst-case graph
ggml_backend_sched_reset(sched.get());
if (!ggml_backend_sched_reserve(sched.get(), gf)) {
LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
}
kv->do_defrag = false;
}
}
......@@ -776,9 +484,6 @@ enum llama_pooling_type llama_context::pooling_type() const {
}
float * llama_context::get_logits() {
// reorder logits for backward compatibility
output_reorder();
return logits;
}
......@@ -821,9 +526,6 @@ float * llama_context::get_logits_ith(int32_t i) {
}
float * llama_context::get_embeddings() {
// reorder embeddings for backward compatibility
output_reorder();
return embd;
}
......@@ -979,8 +681,8 @@ int llama_context::encode(llama_batch & inp_batch) {
}
// temporary allocate memory for the input batch if needed
// TODO: this is incorrect for multiple sequences because pos_max() is the maximum across all sequences
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->pos_max() + 1);
// note: during encode, we always pass the full sequence starting from pos = 0
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : 0);
const llama_batch & batch = batch_allocr.batch;
const int32_t n_tokens = batch.n_tokens;
......@@ -1005,11 +707,13 @@ int llama_context::encode(llama_batch & inp_batch) {
t_compute_start_us = ggml_time_us();
}
embd_seq.clear();
n_queued_tokens += n_tokens;
const int64_t n_embd = hparams.n_embd;
sbatch.from_batch(batch, batch.n_embd, /* simple_split */ true, /* logits_all */ true);
llama_sbatch sbatch = llama_sbatch(batch, batch.n_embd, /* simple_split */ true, /* logits_all */ true);
const llama_ubatch ubatch = sbatch.split_simple(n_tokens);
......@@ -1066,12 +770,12 @@ int llama_context::encode(llama_batch & inp_batch) {
ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd);
GGML_ASSERT(backend_embd != nullptr);
GGML_ASSERT(embd != nullptr);
switch (cparams.pooling_type) {
case LLAMA_POOLING_TYPE_NONE:
{
// extract token embeddings
GGML_ASSERT(embd != nullptr);
GGML_ASSERT(n_tokens*n_embd <= (int64_t) embd_size);
ggml_backend_tensor_get_async(backend_embd, t_embd, embd, 0, n_tokens*n_embd*sizeof(float));
} break;
......@@ -1096,11 +800,18 @@ int llama_context::encode(llama_batch & inp_batch) {
} break;
case LLAMA_POOLING_TYPE_RANK:
{
// TODO: this likely should be the same logic as in llama_decoder_internal, but better to
// wait for an encoder model that requires this pooling type in order to test it
// https://github.com/ggerganov/llama.cpp/pull/9510
GGML_ABORT("RANK pooling not implemented yet");
}
// extract the rerank score - a single float per sequence
auto & embd_seq_out = embd_seq;
for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
continue;
}
embd_seq_out[seq_id].resize(1);
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (seq_id)*sizeof(float), sizeof(float));
}
} break;
case LLAMA_POOLING_TYPE_UNSPECIFIED:
{
GGML_ABORT("unknown pooling type");
......@@ -1138,14 +849,21 @@ int llama_context::encode(llama_batch & inp_batch) {
}
int llama_context::decode(llama_batch & inp_batch) {
if (!memory) {
LLAMA_LOG_WARN("%s: cannot decode batches with this context (use llama_encode() instead)\n", __func__);
return encode(inp_batch);
}
if (inp_batch.n_tokens == 0) {
LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__);
return -1;
}
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
// temporary allocate memory for the input batch if needed
// TODO: this is incorrect for multiple sequences because pos_max() is the maximum across all sequences
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->pos_max() + 1);
// TODO: this is incorrect for multiple sequences because get_pos_max() is the maximum across all sequences
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->get_pos_max() + 1);
const llama_batch & batch = batch_allocr.batch;
......@@ -1156,7 +874,7 @@ int llama_context::decode(llama_batch & inp_batch) {
const int64_t n_tokens_all = batch.n_tokens;
const int64_t n_embd = hparams.n_embd;
llama_kv_cache_guard kv_guard(kv_self.get());
llama_kv_cache_guard kv_guard(kv_self);
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
......@@ -1190,18 +908,14 @@ int llama_context::decode(llama_batch & inp_batch) {
for (uint32_t i = 0; i < n_tokens_all; ++i) {
n_outputs_all += batch.logits[i] != 0;
}
} else if (logits_all || embd_pooled) {
} else if (embd_pooled) {
n_outputs_all = n_tokens_all;
} else {
// keep last output only
n_outputs_all = 1;
}
const bool logits_all = n_outputs_all == n_tokens_all;
sbatch.from_batch(batch, batch.n_embd,
/* simple_split */ !kv_self->recurrent,
/* logits_all */ logits_all);
llama_sbatch sbatch = kv_self->sbatch_init(batch, /* logits_all */ n_outputs_all == n_tokens_all);
// reserve output buffer
if (output_reserve(n_outputs_all) < n_outputs_all) {
......@@ -1215,22 +929,7 @@ int llama_context::decode(llama_batch & inp_batch) {
int64_t n_outputs_prev = 0;
while (sbatch.n_tokens > 0) {
llama_ubatch ubatch = llama_ubatch();
const auto & n_ubatch = cparams.n_ubatch;
if (kv_self->recurrent) {
if (embd_pooled) {
// Pooled embeddings cannot be split across ubatches (yet)
ubatch = sbatch.split_seq(cparams.n_ubatch);
} else {
// recurrent model architectures are easier to implement
// with equal-length sequences
ubatch = sbatch.split_equal(cparams.n_ubatch);
}
} else {
ubatch = sbatch.split_simple(n_ubatch);
}
llama_ubatch ubatch = kv_self->ubatch_next(sbatch, cparams.n_ubatch, embd_pooled);
// count the outputs in this u_batch
{
......@@ -1250,27 +949,12 @@ int llama_context::decode(llama_batch & inp_batch) {
}
// find KV slot
{
if (!kv_self->find_slot(ubatch)) {
kv_self->defrag();
kv_self_update();
if (!kv_self->find_slot(ubatch)) {
LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
return 1;
}
}
if (!kv_self->find_slot(ubatch)) {
LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
if (!kv_self->recurrent) {
// a heuristic, to avoid attending the full cache if it is not yet utilized
// after enough generations, the benefit from this heuristic disappears
// if we start defragmenting the cache, the benefit from this will be more important
const uint32_t pad = kv_self->get_padding(cparams);
kv_self->n = std::min(kv_self->size, std::max(pad, GGML_PAD(kv_self->cell_max(), pad)));
}
return 1;
}
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self->n, kv_self->used, kv_self->head);
ggml_backend_sched_reset(sched.get());
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
......@@ -1384,43 +1068,68 @@ int llama_context::decode(llama_batch & inp_batch) {
// finalize the batch processing
kv_guard.commit();
// set to total number of outputs in the batch, for use in llama_get_logits_ith
n_outputs = n_outputs_all;
// set output mappings
{
bool sorted_output = true;
GGML_ASSERT(sbatch.out_ids.size() == (size_t) n_outputs_all);
auto & out_ids = sbatch.out_ids;
GGML_ASSERT(out_ids.size() == (size_t) n_outputs_all);
for (int64_t i = 0; i < n_outputs_all; ++i) {
int64_t out_id = sbatch.out_ids[i];
int64_t out_id = out_ids[i];
output_ids[out_id] = i;
if (out_id != i) {
sorted_output = false;
}
}
if (sorted_output) {
sbatch.out_ids.clear();
// make the outputs have the same order they had in the user-provided batch
// note: this is mostly relevant for recurrent models atm
if (!sorted_output) {
const uint32_t n_vocab = model.hparams.n_vocab;
const uint32_t n_embd = model.hparams.n_embd;
GGML_ASSERT((size_t) n_outputs == out_ids.size());
// TODO: is there something more efficient which also minimizes swaps?
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
for (int32_t i = 0; i < n_outputs - 1; ++i) {
int32_t j_min = i;
for (int32_t j = i + 1; j < n_outputs; ++j) {
if (out_ids[j] < out_ids[j_min]) {
j_min = j;
}
}
if (j_min == i) { continue; }
std::swap(out_ids[i], out_ids[j_min]);
if (logits_size > 0) {
for (uint32_t k = 0; k < n_vocab; k++) {
std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]);
}
}
if (embd_size > 0) {
for (uint32_t k = 0; k < n_embd; k++) {
std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]);
}
}
}
std::fill(output_ids.begin(), output_ids.end(), -1);
for (int32_t i = 0; i < n_outputs; ++i) {
output_ids[out_ids[i]] = i;
}
}
}
// set to total number of outputs in the batch, for use in llama_get_logits_ith
n_outputs = n_outputs_all;
// wait for the computation to finish (automatically done when obtaining the model output)
//synchronize();
// decide if we need to defrag the kv cache
if (cparams.causal_attn && cparams.defrag_thold > 0.0f) {
// - do not defrag small contexts (i.e. < 2048 tokens)
// - count the padding towards the number of used tokens
const float fragmentation = kv_self->n >= 2048 ? std::max(0.0f, 1.0f - float(kv_self->used + kv_self->get_padding(cparams))/float(kv_self->n)) : 0.0f;
// queue defragmentation for next llama_kv_cache_update
if (fragmentation > cparams.defrag_thold) {
LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
kv_self->defrag();
}
if (cparams.defrag_thold > 0.0f) {
kv_self->defrag_sched(cparams.defrag_thold);
}
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
......@@ -1505,44 +1214,6 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
return n_outputs_max;
}
void llama_context::output_reorder() {
auto & out_ids = sbatch.out_ids;
if (!out_ids.empty()) {
const uint32_t n_vocab = model.hparams.n_vocab;
const uint32_t n_embd = model.hparams.n_embd;
GGML_ASSERT((size_t) n_outputs == out_ids.size());
// TODO: is there something more efficient which also minimizes swaps?
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
for (int32_t i = 0; i < n_outputs - 1; ++i) {
int32_t j_min = i;
for (int32_t j = i + 1; j < n_outputs; ++j) {
if (out_ids[j] < out_ids[j_min]) {
j_min = j;
}
}
if (j_min == i) { continue; }
std::swap(out_ids[i], out_ids[j_min]);
if (logits_size > 0) {
for (uint32_t k = 0; k < n_vocab; k++) {
std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]);
}
}
if (embd_size > 0) {
for (uint32_t k = 0; k < n_embd; k++) {
std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]);
}
}
}
std::fill(output_ids.begin(), output_ids.end(), -1);
for (int32_t i = 0; i < n_outputs; ++i) {
output_ids[out_ids[i]] = i;
}
out_ids.clear();
}
}
//
// graph
//
......@@ -1579,7 +1250,7 @@ llm_graph_result_ptr llama_context::graph_build(
/*.backend_cpu =*/ backend_cpu,
/*.cvec =*/ &cvec,
/*.loras =*/ &loras,
/*.memory =*/ kv_self.get(),
/*.memory =*/ memory.get(),
/*.cross =*/ &cross,
/*.n_outputs =*/ n_outputs,
/*.cb =*/ graph_get_cb(),
......@@ -1983,8 +1654,6 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
{
LLAMA_LOG_DEBUG("%s: - writing output ids\n", __func__);
output_reorder();
const auto n_outputs = this->n_outputs;
const auto & output_ids = this->output_ids;
......@@ -2038,6 +1707,8 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
}
LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__);
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->state_write(io);
return io.n_bytes();
......@@ -2121,8 +1792,13 @@ size_t llama_context::state_read_data(llama_io_read_i & io) {
}
}
LLAMA_LOG_DEBUG("%s: - reading KV self\n", __func__);
kv_self->state_read(io);
if (memory) {
LLAMA_LOG_DEBUG("%s: - reading KV self\n", __func__);
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->state_read(io);
}
return io.n_bytes();
}
......@@ -2130,7 +1806,11 @@ size_t llama_context::state_read_data(llama_io_read_i & io) {
size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id) {
GGML_UNUSED(seq_id);
kv_self->state_write(io, seq_id);
if (memory) {
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->state_write(io, seq_id);
}
return io.n_bytes();
}
......@@ -2138,7 +1818,11 @@ size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id s
size_t llama_context::state_seq_read_data(llama_io_read_i & io, llama_seq_id seq_id) {
GGML_UNUSED(seq_id);
kv_self->state_read(io, seq_id);
if (memory) {
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->state_read(io, seq_id);
}
return io.n_bytes();
}
......@@ -2166,6 +1850,215 @@ void llama_context::perf_reset() {
t_p_eval_us = n_p_eval = 0;
}
//
// training
//
static void llama_set_param(struct ggml_tensor * tensor, llama_opt_param_filter param_filter, void * userdata) {
if (!tensor || tensor->type != GGML_TYPE_F32) {
return;
}
if (!param_filter(tensor, userdata)) {
return;
}
if (strcmp(tensor->name, "token_embd.weight") == 0) {
return; // FIXME
}
if (strcmp(tensor->name, "rope_freqs.weight") == 0) {
return; // FIXME
}
ggml_set_param(tensor);
}
void llama_context::opt_init(struct llama_model * model, struct llama_opt_params lopt_params) {
GGML_ASSERT(!opt_ctx);
model->hparams.n_ctx_train = lopt_params.n_ctx_train > 0 ? lopt_params.n_ctx_train : n_ctx();
const uint32_t n_batch = std::min(this->n_batch(), model->hparams.n_ctx_train);
const uint32_t n_ubatch = std::min(this->n_ubatch(), n_batch);
GGML_ASSERT(model->hparams.n_ctx_train % n_batch == 0);
GGML_ASSERT(n_batch % n_ubatch == 0);
ggml_opt_params opt_params = ggml_opt_default_params(sched.get(), GGML_OPT_LOSS_TYPE_CROSS_ENTROPY);
opt_params.opt_period = n_batch / n_ubatch;
opt_params.get_opt_pars = lopt_params.get_opt_pars;
opt_params.get_opt_pars_ud = lopt_params.get_opt_pars_ud;
opt_ctx = ggml_opt_init(opt_params);
llama_opt_param_filter param_filter = lopt_params.param_filter;
void * param_filter_ud = lopt_params.param_filter_ud;
//llama_set_param(model->tok_embd, param_filter, param_filter_ud); // FIXME
llama_set_param(model->type_embd, param_filter, param_filter_ud);
llama_set_param(model->pos_embd, param_filter, param_filter_ud);
llama_set_param(model->tok_norm, param_filter, param_filter_ud);
llama_set_param(model->tok_norm_b, param_filter, param_filter_ud);
llama_set_param(model->output_norm, param_filter, param_filter_ud);
llama_set_param(model->output_norm_b, param_filter, param_filter_ud);
llama_set_param(model->output, param_filter, param_filter_ud);
llama_set_param(model->output_b, param_filter, param_filter_ud);
llama_set_param(model->output_norm_enc, param_filter, param_filter_ud);
llama_set_param(model->cls, param_filter, param_filter_ud);
llama_set_param(model->cls_b, param_filter, param_filter_ud);
llama_set_param(model->cls_out, param_filter, param_filter_ud);
llama_set_param(model->cls_out_b, param_filter, param_filter_ud);
for (struct llama_layer & layer : model->layers) {
for (size_t i = 0; i < sizeof(layer)/sizeof(struct ggml_tensor *); ++i) {
llama_set_param(reinterpret_cast<struct ggml_tensor **>(&layer)[i], param_filter, param_filter_ud);
}
}
}
void llama_context::opt_epoch_iter(
ggml_opt_dataset_t dataset,
ggml_opt_result_t result,
const std::vector<llama_token> & tokens,
const std::vector<llama_token> & labels_sparse,
llama_batch & batch,
ggml_opt_epoch_callback callback,
bool train,
int64_t idata_in_loop,
int64_t ndata_in_loop,
int64_t t_loop_start) {
GGML_ASSERT(opt_ctx);
const uint32_t n_ctx = llama_model_n_ctx_train(&model);
const uint32_t n_batch = std::min(this->n_batch(), n_ctx);
const uint32_t n_ubatch = std::min(this->n_ubatch(), n_batch);
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
kv_self->clear();
llama_kv_cache_guard kv_guard(kv_self);
for (uint32_t pos_ctx = 0; pos_ctx < n_ctx; pos_ctx += n_batch) {
batch.n_tokens = n_batch;
for (uint32_t pos_batch = 0; pos_batch < n_batch; ++pos_batch) {
batch.token [pos_batch] = tokens[pos_ctx + pos_batch];
batch.pos [pos_batch] = pos_ctx + pos_batch;
batch.n_seq_id[pos_batch] = 1;
batch.seq_id [pos_batch][0] = 0;
batch.logits [pos_batch] = true;
}
const auto n_tokens_all = batch.n_tokens;
n_queued_tokens += n_tokens_all;
// this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
embd_seq.clear();
int64_t n_outputs_all = n_tokens_all;
llama_sbatch sbatch = kv_self->sbatch_init(batch, /*logits_all =*/ true);
// reserve output buffer
if (output_reserve(n_outputs_all) < n_outputs_all) {
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %" PRId64 " outputs\n", __func__, n_outputs_all);
GGML_ABORT("TODO: handle this error");
};
for (uint32_t pos_batch = 0; pos_batch < n_batch; pos_batch += n_ubatch) {
llama_ubatch ubatch = kv_self->ubatch_next(sbatch, cparams.n_ubatch, embd_pooled);
n_outputs = ubatch.n_tokens;
// TODO: not sure if this is needed
if (!kv_self->find_slot(ubatch)) {
LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
GGML_ABORT("TODO: handle this error");
}
auto * gf = graph_init();
auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT);
struct ggml_context * ctx_compute_opt;
{
const size_t size_gf = ggml_graph_size(gf);
const size_t size_meta = 4*size_gf*ggml_tensor_overhead() + 2*ggml_graph_overhead_custom(size_gf, /*grads = */ true);
struct ggml_init_params params = {
/*.mem_size =*/ size_meta,
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
ctx_compute_opt = ggml_init(params);
}
ggml_opt_prepare_alloc(opt_ctx, ctx_compute_opt, gf, res->get_tokens(), res->get_logits());
ggml_opt_alloc(opt_ctx, train);
res->set_inputs(&ubatch);
{
struct ggml_tensor * labels = ggml_opt_labels(opt_ctx);
GGML_ASSERT(labels->ne[1] == n_ubatch);
ggml_set_zero(labels);
const float onef = 1.0f;
for (uint32_t pos_ubatch = 0; pos_ubatch < n_ubatch; ++pos_ubatch) {
const uint32_t ilabel = pos_ctx + pos_batch + pos_ubatch;
GGML_ASSERT(labels_sparse[ilabel] < labels->ne[0]);
ggml_backend_tensor_set(labels, &onef, (pos_ubatch*labels->ne[0] + labels_sparse[ilabel])*sizeof(float), sizeof(float));
}
}
ggml_opt_eval(opt_ctx, result);
if (callback) {
callback(train, opt_ctx, dataset, result, idata_in_loop + (pos_ctx + pos_batch)/n_ubatch + 1, ndata_in_loop, t_loop_start);
}
ggml_free(ctx_compute_opt);
}
}
kv_guard.commit();
}
void llama_context::opt_epoch(
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train,
ggml_opt_result_t result_eval,
int64_t idata_split,
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval) {
const uint32_t n_ctx = this->n_ctx();
const uint32_t n_batch = std::min(cparams.n_batch, n_ctx);
const uint32_t n_ubatch = std::min(cparams.n_ubatch, n_batch);
const int64_t ndata = ggml_opt_dataset_ndata(dataset);
GGML_ASSERT(idata_split >= 0);
GGML_ASSERT(idata_split <= ndata);
const uint32_t ubatch_per_ctx = n_ctx / n_ubatch;
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
std::vector<llama_token> tokens(n_ctx);
std::vector<llama_token> labels_sparse(n_ctx);
int64_t idata = 0;
int64_t t_loop_start = ggml_time_us();
int64_t ndata_in_loop = idata_split*ubatch_per_ctx;
for (; idata < idata_split; ++idata) {
constexpr bool train = true;
const int64_t idata_in_loop = idata*ubatch_per_ctx;
ggml_opt_dataset_get_batch_host(dataset, tokens.data(), n_ctx*sizeof(llama_token), labels_sparse.data(), idata);
opt_epoch_iter(dataset, result_train, tokens, labels_sparse, batch,
callback_train, train, idata_in_loop, ndata_in_loop, t_loop_start);
}
t_loop_start = ggml_time_us();
ndata_in_loop = (ndata - idata_split)*ubatch_per_ctx;
for (; idata < ndata; ++idata) {
constexpr bool train = false;
const int64_t idata_in_loop = (idata - idata_split)*ubatch_per_ctx;
ggml_opt_dataset_get_batch_host(dataset, tokens.data(), n_ctx*sizeof(llama_token), labels_sparse.data(), idata);
opt_epoch_iter(dataset, result_eval, tokens, labels_sparse, batch,
callback_eval, train, idata_in_loop, ndata_in_loop, t_loop_start);
}
llama_batch_free(batch);
}
//
// interface implementation
//
......@@ -2193,14 +2086,14 @@ llama_context_params llama_context_default_params() {
/*.cb_eval_user_data =*/ nullptr,
/*.type_k =*/ GGML_TYPE_F16,
/*.type_v =*/ GGML_TYPE_F16,
/*.logits_all =*/ false,
/*.abort_callback =*/ nullptr,
/*.abort_callback_data =*/ nullptr,
/*.embeddings =*/ false,
/*.offload_kqv =*/ true,
/*.flash_attn =*/ false,
/*.no_perf =*/ true,
/*.op_offload =*/ true,
/*.cross_attn =*/ false,
/*.abort_callback =*/ nullptr,
/*.abort_callback_data =*/ nullptr,
};
return result;
......@@ -2498,7 +2391,7 @@ void llama_kv_cache_seq_cp(
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1) {
return llama_kv_self_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1);
llama_kv_self_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1);
}
void llama_kv_self_seq_cp(
......@@ -2512,14 +2405,14 @@ void llama_kv_self_seq_cp(
return;
}
return kv->seq_cp(seq_id_src, seq_id_dst, p0, p1);
kv->seq_cp(seq_id_src, seq_id_dst, p0, p1);
}
// deprecated
void llama_kv_cache_seq_keep(
llama_context * ctx,
llama_seq_id seq_id) {
return llama_kv_self_seq_keep(ctx, seq_id);
llama_kv_self_seq_keep(ctx, seq_id);
}
void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
......@@ -2528,7 +2421,7 @@ void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
return;
}
return kv->seq_keep(seq_id);
kv->seq_keep(seq_id);
}
// deprecated
......@@ -2538,7 +2431,7 @@ void llama_kv_cache_seq_add(
llama_pos p0,
llama_pos p1,
llama_pos delta) {
return llama_kv_self_seq_add(ctx, seq_id, p0, p1, delta);
llama_kv_self_seq_add(ctx, seq_id, p0, p1, delta);
}
void llama_kv_self_seq_add(
......@@ -2552,7 +2445,7 @@ void llama_kv_self_seq_add(
return;
}
return kv->seq_add(seq_id, p0, p1, delta);
kv->seq_add(seq_id, p0, p1, delta);
}
// deprecated
......@@ -2562,7 +2455,7 @@ void llama_kv_cache_seq_div(
llama_pos p0,
llama_pos p1,
int d) {
return llama_kv_self_seq_div(ctx, seq_id, p0, p1, d);
llama_kv_self_seq_div(ctx, seq_id, p0, p1, d);
}
void llama_kv_self_seq_div(
......@@ -2576,7 +2469,7 @@ void llama_kv_self_seq_div(
return;
}
return kv->seq_div(seq_id, p0, p1, d);
kv->seq_div(seq_id, p0, p1, d);
}
// deprecated
......@@ -2595,7 +2488,7 @@ llama_pos llama_kv_self_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) {
// deprecated
void llama_kv_cache_defrag(llama_context * ctx) {
return llama_kv_self_defrag(ctx);
llama_kv_self_defrag(ctx);
}
void llama_kv_self_defrag(llama_context * ctx) {
......@@ -2604,7 +2497,8 @@ void llama_kv_self_defrag(llama_context * ctx) {
return;
}
return kv->defrag();
// force defrag
kv->defrag_sched(-1.0f);
}
// deprecated
......@@ -2788,3 +2682,34 @@ void llama_perf_context_print(const llama_context * ctx) {
void llama_perf_context_reset(llama_context * ctx) {
ctx->perf_reset();
}
//
// training
//
bool llama_opt_param_filter_all(const struct ggml_tensor * tensor, void * userdata) {
GGML_UNUSED(tensor);
GGML_UNUSED(userdata);
return true;
}
void llama_opt_init(struct llama_context * ctx, struct llama_model * model, struct llama_opt_params lopt_params) {
ctx->opt_init(model, lopt_params);
}
void llama_opt_epoch(
struct llama_context * ctx,
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train,
ggml_opt_result_t result_eval,
int64_t idata_split,
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval) {
ctx->opt_epoch(
dataset,
result_train,
result_eval,
idata_split,
callback_train,
callback_eval);
}
......@@ -8,6 +8,7 @@
#include "llama-kv-cache.h"
#include "ggml-cpp.h"
#include "ggml-opt.h"
#include <map>
#include <vector>
......@@ -28,7 +29,12 @@ struct llama_context {
void synchronize();
const llama_model & get_model() const;
const llama_model & get_model() const;
const llama_cparams & get_cparams() const;
ggml_backend_sched_t get_sched() const;
ggml_context * get_ctx_compute() const;
uint32_t n_ctx() const;
uint32_t n_ctx_per_seq() const;
......@@ -130,6 +136,32 @@ struct llama_context {
llama_perf_context_data perf_get_data() const;
void perf_reset();
//
// training
//
void opt_init(struct llama_model * model, struct llama_opt_params lopt_params);
void opt_epoch(
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train,
ggml_opt_result_t result_eval,
int64_t idata_split,
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval);
void opt_epoch_iter(
ggml_opt_dataset_t dataset,
ggml_opt_result_t result,
const std::vector<llama_token> & tokens,
const std::vector<llama_token> & labels_sparse,
llama_batch & batch,
ggml_opt_epoch_callback callback,
bool train,
int64_t idata_in_loop,
int64_t ndata_in_loop,
int64_t t_loop_start);
private:
//
// output
......@@ -139,50 +171,30 @@ private:
// Returns max number of outputs for which space was reserved.
int32_t output_reserve(int32_t n_outputs);
// make the outputs have the same order they had in the user-provided batch
// TODO: maybe remove this
void output_reorder();
//
// graph
//
public:
int32_t graph_max_nodes() const;
// zero-out inputs and create the ctx_compute for the compute graph
ggml_cgraph * graph_init();
// returns the result of ggml_backend_sched_graph_compute_async execution
ggml_status graph_compute(
ggml_cgraph * gf,
bool batched);
private:
llm_graph_result_ptr graph_build(
ggml_context * ctx,
ggml_cgraph * gf,
const llama_ubatch & ubatch,
llm_graph_type gtype);
// returns the result of ggml_backend_sched_graph_compute_async execution
ggml_status graph_compute(
ggml_cgraph * gf,
bool batched);
llm_graph_cb graph_get_cb() const;
// used by kv_self_update()
ggml_tensor * build_rope_shift(
ggml_context * ctx0,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale) const;
llm_graph_result_ptr build_kv_self_shift(
ggml_context * ctx0,
ggml_cgraph * gf) const;
llm_graph_result_ptr build_kv_self_defrag(
ggml_context * ctx0,
ggml_cgraph * gf,
const std::vector<struct llama_kv_defrag_move> & moves) const;
// TODO: read/write lora adapters and cvec
size_t state_write_data(llama_io_write_i & io);
size_t state_read_data (llama_io_read_i & io);
......@@ -199,14 +211,10 @@ private:
llama_cparams cparams;
llama_adapter_cvec cvec;
llama_adapter_loras loras;
llama_sbatch sbatch;
llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably
std::unique_ptr<llama_kv_cache_unified> kv_self;
// TODO: remove
bool logits_all = false;
std::unique_ptr<llama_memory_i> memory;
// decode output (2-dimensional array: [n_outputs][n_vocab])
size_t logits_size = 0; // capacity (of floats) for logits
......@@ -233,6 +241,9 @@ private:
ggml_context_ptr ctx_compute;
// training
ggml_opt_context_t opt_ctx = nullptr;
ggml_threadpool_t threadpool = nullptr;
ggml_threadpool_t threadpool_batch = nullptr;
......
......@@ -29,8 +29,9 @@ struct llama_cparams {
bool offload_kqv;
bool flash_attn;
bool no_perf;
bool cross_attn;
bool warmup;
bool op_offload;
bool cross_attn;
enum llama_pooling_type pooling_type;
......
......@@ -284,24 +284,7 @@ void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self->head;
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
// prevent out-of-bound sources
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self->size) {
kv_cell.src = cell_id;
}
data[i] = kv_cell.src;
// TODO: do not mutate the KV cache
// ensure copy only happens once
if (kv_cell.src != (int32_t) cell_id) {
kv_cell.src = cell_id;
}
data[i] = kv_self->s_copy(i);
}
}
}
......@@ -317,18 +300,7 @@ void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
// clear unused states
for (int i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self->head;
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
data[i] = (float) (kv_cell.src >= 0);
// only clear once
if (kv_cell.src < 0) {
kv_cell.src = cell_id;
}
data[i] = kv_self->s_mask(i);
}
}
}
......@@ -816,7 +788,7 @@ ggml_tensor * llm_graph_context::build_ffn(
} break;
}
if (type_gate == LLM_FFN_PAR) {
if (gate && type_gate == LLM_FFN_PAR) {
cur = ggml_mul(ctx0, cur, tmp);
cb(cur, "ffn_gate_par", il);
}
......@@ -1005,6 +977,7 @@ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
//cb(inp->tokens, "inp_tokens", -1);
ggml_set_input(inp->tokens);
res->t_tokens = inp->tokens;
cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
......@@ -1111,7 +1084,7 @@ ggml_tensor * llm_graph_context::build_inp_cls() const {
}
ggml_tensor * llm_graph_context::build_inp_s_copy() const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
......@@ -1128,7 +1101,7 @@ ggml_tensor * llm_graph_context::build_inp_s_copy() const {
}
ggml_tensor * llm_graph_context::build_inp_s_mask() const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
......@@ -1261,8 +1234,19 @@ ggml_tensor * llm_graph_context::build_attn_mha(
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
if (v_mla) {
#if 0
// v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
// However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
cur = ggml_mul_mat(ctx0, v_mla, cur);
#else
// It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
// The permutations are noops and only change how the tensor data is interpreted.
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_mul_mat(ctx0, v_mla, cur);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
#endif
}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
......@@ -1442,8 +1426,6 @@ ggml_tensor * llm_graph_context::build_attn(
// store to KV cache
{
GGML_ASSERT(!kv_self->recurrent);
const auto kv_head = kv_self->head;
GGML_ASSERT(kv_self->size == n_ctx);
......@@ -1612,7 +1594,7 @@ ggml_tensor * llm_graph_context::build_copy_mask_state(
ggml_tensor * state_mask,
int32_t n_state,
int32_t n_seqs) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto n_kv = kv_self->n;
const auto kv_head = kv_self->head;
......@@ -1644,7 +1626,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto token_shift_count = hparams.token_shift_count;
......@@ -1665,7 +1647,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
ggml_tensor * token_shift,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto token_shift_count = hparams.token_shift_count;
const auto n_embd = hparams.n_embd;
......
......@@ -19,6 +19,7 @@ struct llama_cparams;
class llama_memory_i;
class llama_kv_cache_unified;
class llama_kv_cache_recurrent;
// certain models (typically multi-modal) can produce different types of graphs
enum llm_graph_type {
......@@ -187,26 +188,26 @@ public:
class llm_graph_input_s_copy : public llm_graph_input_i {
public:
llm_graph_input_s_copy(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
llm_graph_input_s_copy(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_s_copy() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * s_copy; // I32 [kv_size]
const llama_kv_cache_unified * kv_self;
const llama_kv_cache_recurrent * kv_self;
};
class llm_graph_input_s_mask : public llm_graph_input_i {
public:
llm_graph_input_s_mask(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
llm_graph_input_s_mask(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_s_mask() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * s_mask; // F32 [1, n_kv]
const llama_kv_cache_unified * kv_self;
const llama_kv_cache_recurrent * kv_self;
};
class llm_graph_input_cross_embd : public llm_graph_input_i {
......@@ -308,6 +309,7 @@ class llm_graph_result_i {
public:
virtual ~llm_graph_result_i() = default;
virtual ggml_tensor * get_tokens() = 0;
virtual ggml_tensor * get_logits() = 0;
virtual ggml_tensor * get_embd() = 0;
virtual ggml_tensor * get_embd_pooled() = 0;
......@@ -322,6 +324,7 @@ class llm_graph_result : public llm_graph_result_i {
public:
virtual ~llm_graph_result() = default;
ggml_tensor * get_tokens() override { return t_tokens; }
ggml_tensor * get_logits() override { return t_logits; }
ggml_tensor * get_embd() override { return t_embd; }
ggml_tensor * get_embd_pooled() override { return t_embd_pooled; }
......@@ -338,6 +341,7 @@ public:
}
// important graph nodes
ggml_tensor * t_tokens = nullptr;
ggml_tensor * t_logits = nullptr;
ggml_tensor * t_embd = nullptr;
ggml_tensor * t_embd_pooled = nullptr;
......@@ -361,8 +365,8 @@ struct llm_graph_params {
const llama_cparams & cparams;
const llama_ubatch & ubatch;
ggml_backend_sched * sched;
ggml_backend * backend_cpu;
ggml_backend_sched_t sched;
ggml_backend_t backend_cpu;
const llama_adapter_cvec * cvec;
const llama_adapter_loras * loras;
......@@ -413,9 +417,9 @@ struct llm_graph_context {
ggml_context * ctx0 = nullptr;
ggml_backend_sched * sched;
ggml_backend_sched_t sched;
ggml_backend * backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
const llama_adapter_cvec * cvec;
const llama_adapter_loras * loras;
......
......@@ -4,33 +4,41 @@
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-model.h"
#include "llama-context.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <limits>
#include <map>
#include <stdexcept>
llama_kv_cache_unified::llama_kv_cache_unified(const llama_hparams & hparams, callbacks cbs) : hparams(hparams), cbs(std::move(cbs)) {
//
// llama_kv_cache_unified
//
uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) {
// the FA kernels require padding to avoid extra runtime boundary checks
return cparams.flash_attn ? 256u : 32u;
}
bool llama_kv_cache_unified::init(
llama_kv_cache_unified::llama_kv_cache_unified(
const llama_model & model,
const llama_cparams & cparams,
ggml_type type_k,
ggml_type type_v,
bool v_trans,
bool offload,
uint32_t kv_size,
bool offload) {
uint32_t padding) : model(model), hparams(model.hparams), v_trans(v_trans), padding(padding) {
const int32_t n_layer = hparams.n_layer;
has_shift = false;
can_shift = true;
recurrent = llama_model_is_recurrent(&model);
v_trans = !recurrent && !cparams.flash_attn;
can_shift = !recurrent;
LLAMA_LOG_INFO("%s: kv_size = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d, padding = %d\n",
__func__, kv_size, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, can_shift, padding);
LLAMA_LOG_INFO("%s: kv_size = %d, offload = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d\n",
__func__, kv_size, offload, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, can_shift);
GGML_ASSERT(kv_size % padding == 0 && "kv_size must be a multiple of padding");
head = 0;
size = kv_size;
......@@ -76,23 +84,20 @@ bool llama_kv_cache_unified::init(
const char * dev_name = "CPU";
ggml_backend_buffer_type_t buft;
ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
if (offload) {
auto * dev = model.dev_layer(i);
buft = ggml_backend_dev_buffer_type(dev);
dev_name = ggml_backend_dev_name(dev);
} else {
buft = ggml_backend_cpu_buffer_type();
}
LLAMA_LOG_DEBUG("%s: layer %3d: n_embd_k_gqa = %d, n_embd_v_gqa = %d, dev = %s\n", __func__,
i, n_embd_k_gqa, n_embd_v_gqa, dev_name);
LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, i, dev_name);
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__);
return false;
throw std::runtime_error("failed to create ggml context for kv cache");
}
ggml_tensor * k, *v;
......@@ -118,55 +123,28 @@ bool llama_kv_cache_unified::init(
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
return false;
throw std::runtime_error("failed to allocate buffer for kv cache");
}
ggml_backend_buffer_clear(buf, 0);
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
bufs.emplace_back(buf);
}
return true;
}
int32_t llama_kv_cache_unified::get_n_tokens() const {
int32_t result = 0;
for (uint32_t i = 0; i < size; i++) {
result += cells[i].seq_id.size();
}
return result;
}
int32_t llama_kv_cache_unified::get_used_cells() const {
return used;
}
size_t llama_kv_cache_unified::total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
return size;
}
{
const size_t memory_size_k = size_k_bytes();
const size_t memory_size_v = size_v_bytes();
llama_pos llama_kv_cache_unified::pos_max() const {
llama_pos pos_max = -1;
for (const auto & cell : cells) {
pos_max = std::max(pos_max, cell.pos);
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
}
return pos_max;
}
void llama_kv_cache_unified::clear() {
for (int32_t i = 0; i < (int32_t) size; ++i) {
cells[i].pos = -1;
cells[i].seq_id.clear();
cells[i].src = -1;
cells[i].tail = -1;
}
head = 0;
used = 0;
......@@ -187,35 +165,6 @@ bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos
p1 = std::numeric_limits<llama_pos>::max();
}
// models like Mamba or RWKV can't have a state partially erased
if (recurrent) {
if (seq_id >= (int64_t) size) {
// could be fatal
return false;
}
if (0 <= seq_id) {
int32_t & tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
const llama_kv_cell & cell = cells[tail_id];
// partial intersection is invalid
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
return false;
}
// invalidate tails which will be cleared
if (p0 <= cell.pos && cell.pos < p1) {
tail_id = -1;
}
}
} else {
// seq_id is negative, then the range should include everything or nothing
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
return false;
}
}
return true;
}
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].pos >= p0 && cells[i].pos < p1) {
if (seq_id < 0) {
......@@ -232,7 +181,6 @@ bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos
}
cells[i].pos = -1;
cells[i].src = -1;
if (new_head == size) {
new_head = i;
......@@ -262,34 +210,6 @@ void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id
p1 = std::numeric_limits<llama_pos>::max();
}
if (recurrent) {
if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
llama_kv_cell & tail_src = cells[seq_id_src];
llama_kv_cell & tail_dst = cells[seq_id_dst];
if (tail_dst.tail >= 0) {
// clear destination seq_id if it wasn't empty
llama_kv_cell & cell_dst = cells[tail_dst.tail];
cell_dst.seq_id.erase(seq_id_dst);
tail_dst.tail = -1;
if (cell_dst.seq_id.empty()) {
cell_dst.pos = -1;
cell_dst.delta = -1;
cell_dst.src = -1;
used -= 1;
}
}
if (tail_src.tail >= 0) {
llama_kv_cell & cell_src = cells[tail_src.tail];
cell_src.seq_id.insert(seq_id_dst);
tail_dst.tail = tail_src.tail;
}
}
return;
}
// otherwise, this is the KV of a Transformer-like model
head = 0;
......@@ -304,17 +224,12 @@ void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) {
uint32_t new_head = size;
for (uint32_t i = 0; i < size; ++i) {
if (recurrent && (llama_seq_id) i != seq_id) {
cells[i].tail = -1;
}
if (!cells[i].has_seq_id(seq_id)) {
if (cells[i].pos >= 0) {
used--;
}
cells[i].pos = -1;
cells[i].src = -1;
cells[i].seq_id.clear();
if (new_head == size){
......@@ -352,20 +267,6 @@ void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_po
return;
}
if (recurrent) {
// for Mamba-like or RWKV models, only the pos needs to be shifted
if (0 <= seq_id && seq_id < (int64_t) size) {
const int32_t tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
llama_kv_cell & cell = cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos += delta;
}
}
}
return;
}
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) {
has_shift = true;
......@@ -408,21 +309,6 @@ void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_po
return;
}
if (recurrent) {
// for Mamba-like or RWKV models, only the pos needs to be changed
if (0 <= seq_id && seq_id < (int64_t) size) {
const int32_t tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
llama_kv_cell & cell = cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos /= d;
}
}
}
return;
}
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) {
has_shift = true;
......@@ -448,23 +334,11 @@ llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const {
return result;
}
void llama_kv_cache_unified::defrag() {
if (!recurrent) {
do_defrag = true;
}
}
void llama_kv_cache_unified::restore() {
if (pending.ranges.empty()) {
return;
}
// TODO: tmp - move to llama_kv_cache_recurrent
if (recurrent) {
seq_rm(-1, -1, -1);
return;
}
uint32_t new_head = size;
for (auto & range : pending.ranges) {
......@@ -477,7 +351,6 @@ void llama_kv_cache_unified::restore() {
}
cells[i].pos = -1;
cells[i].src = -1;
}
new_head = std::min(new_head, range.c0);
......@@ -489,11 +362,6 @@ void llama_kv_cache_unified::restore() {
}
void llama_kv_cache_unified::commit() {
// TODO: tmp - move to llama_kv_cache_recurrent
if (recurrent) {
return;
}
if (pending.ranges.empty()) {
LLAMA_LOG_WARN("%s: no pending KV cache updates to commit - might indicate a bug (ref: %s)\n",
__func__, "https://github.com/ggml-org/llama.cpp/pull/12695");
......@@ -503,183 +371,115 @@ void llama_kv_cache_unified::commit() {
pending.ranges.clear();
}
bool llama_kv_cache_unified::get_can_shift() const {
return can_shift;
}
bool llama_kv_cache_unified::update(llama_context & lctx) {
auto * sched = lctx.get_sched();
bool llama_kv_cache_unified::find_slot(
const llama_ubatch & ubatch) {
const uint32_t n_tokens = ubatch.n_tokens;
const uint32_t n_seqs = ubatch.n_seqs;
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
if (has_shift) {
if (!get_can_shift()) {
GGML_ABORT("The current KV cache / model configuration does not support K-shift");
}
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (head > used + 2*ubatch.n_tokens) {
head = 0;
}
LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
if (recurrent) {
// For recurrent state architectures (like Mamba or RWKV),
// each cache cell can store the state for a whole sequence.
// A slot should be always be contiguous.
// apply K-shift if needed
if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
ggml_backend_sched_reset(sched);
// can only process batches with an equal number of new tokens in each sequence
GGML_ASSERT(ubatch.equal_seqs);
auto * gf = lctx.graph_init();
int32_t min = size - 1;
int32_t max = 0;
auto res = build_graph_shift(lctx.get_cparams(), lctx.get_ctx_compute(), gf);
// everything should fit if all seq_ids are smaller than the max
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t n_seq_id = ubatch.n_seq_id[s];
for (uint32_t j = 0; j < n_seq_id; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[s][j];
ggml_backend_sched_alloc_graph(sched, gf);
if (seq_id < 0 || (uint32_t) seq_id >= size) {
// too big seq_id
// TODO: would it be possible to resize the cache instead?
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, size);
return false;
}
if (j > 0) {
llama_kv_cell & seq = cells[seq_id];
if (seq.tail >= 0) {
llama_kv_cell & cell = cells[seq.tail];
// clear cells from seq_ids that become shared
// (should not normally happen, but let's handle it anyway)
cell.seq_id.erase(seq_id);
seq.tail = -1;
if (cell.seq_id.empty()) {
cell.pos = -1;
cell.src = -1;
used -= 1;
}
}
}
}
res->set_inputs(nullptr);
lctx.graph_compute(gf, false);
}
#ifndef NDEBUG
{
std::vector<int32_t> tails_verif;
tails_verif.assign(size, -1);
for (uint32_t i = 0; i < size; ++i) {
llama_kv_cell & cell = cells[i];
for (llama_seq_id seq_id : cell.seq_id) {
if (tails_verif[seq_id] != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
}
tails_verif[seq_id] = i;
}
}
has_shift = false;
for (uint32_t i = 0; i < size; ++i) {
if (tails_verif[i] != cells[i].tail) {
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]);
}
cells[i].delta = 0;
}
}
#endif
// find next empty cell
uint32_t next_empty_cell = head;
}
for (uint32_t i = 0; i < size; ++i) {
if (next_empty_cell >= size) { next_empty_cell -= size; }
llama_kv_cell & cell = cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
if (do_defrag) {
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
const uint32_t n_max_nodes = lctx.graph_max_nodes();
const uint32_t max_moves = (n_max_nodes - 2*model.hparams.n_layer)/(6*model.hparams.n_layer);
if (!defrag_prepare(n_max_nodes)) {
LLAMA_LOG_ERROR("%s: failed to prepare defragmentation\n", __func__);
return false;
}
// find usable cell range
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
llama_kv_cell & seq_meta = cells[seq_id];
bool has_cell = false;
if (seq_meta.tail >= 0) {
llama_kv_cell & cell = cells[seq_meta.tail];
GGML_ASSERT(cell.has_seq_id(seq_id));
// does this seq_id "own" the cell?
if (cell.seq_id.size() == 1) { has_cell = true; }
}
if (!has_cell) {
llama_kv_cell & empty_cell = cells[next_empty_cell];
GGML_ASSERT(empty_cell.is_empty());
// copy old tail into the empty cell
if (seq_meta.tail >= 0) {
llama_kv_cell & orig_cell = cells[seq_meta.tail];
empty_cell.pos = orig_cell.pos;
empty_cell.src = orig_cell.src;
orig_cell.seq_id.erase(seq_id);
empty_cell.seq_id.insert(seq_id); // will be overwritten
}
seq_meta.tail = next_empty_cell;
// find next empty cell
if (s + 1 < n_seqs) {
next_empty_cell += 1;
for (uint32_t i = 0; i < size; ++i) {
if (next_empty_cell >= size) { next_empty_cell -= size; }
llama_kv_cell & cell = cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
}
}
}
if (min > seq_meta.tail) { min = seq_meta.tail; }
if (max < seq_meta.tail) { max = seq_meta.tail; }
}
for (std::size_t i = 0; i < defrag_info.moves.size(); i += max_moves) {
std::vector<struct llama_kv_defrag_move> chunk;
auto end = std::min(i + max_moves, defrag_info.moves.size());
chunk.assign(defrag_info.moves.begin() + i, defrag_info.moves.begin() + end);
// gather and re-order
for (uint32_t s = 0; s < n_seqs; ++s) {
int32_t dst_id = s + min;
int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
if (dst_id != src_id) {
llama_kv_cell & dst_cell = cells[dst_id];
llama_kv_cell & src_cell = cells[src_id];
ggml_backend_sched_reset(sched);
std::swap(dst_cell.pos, src_cell.pos);
std::swap(dst_cell.src, src_cell.src);
std::swap(dst_cell.seq_id, src_cell.seq_id);
auto * gf = lctx.graph_init();
// swap tails (assuming they NEVER overlap)
for (const llama_seq_id seq_id : src_cell.seq_id) {
cells[seq_id].tail = src_id;
}
for (const llama_seq_id seq_id : dst_cell.seq_id) {
cells[seq_id].tail = dst_id;
}
}
}
auto res = build_graph_defrag(lctx.get_cparams(), lctx.get_ctx_compute(), gf, chunk);
// update the pos of the used seqs
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
int32_t cell_id = s + min;
llama_kv_cell & cell = cells[cell_id];
ggml_backend_sched_alloc_graph(sched, gf);
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
// What should happen when the pos backtracks or skips a value?
// Clearing the state mid-batch would require special-casing which isn't done.
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
}
cell.pos = last_pos;
cell.seq_id.clear();
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[s][j];
cell.seq_id.insert(seq_id);
cells[seq_id].tail = cell_id;
}
res->set_inputs(nullptr);
lctx.graph_compute(gf, false);
}
// allow getting the range of used cells, from head to head + n
head = min;
n = max - min + 1;
used = std::count_if(cells.begin(), cells.end(),
[](const llama_kv_cell& cell){ return !cell.is_empty(); });
do_defrag = false;
}
// we never need to reserve a worst case graph
return false;
}
void llama_kv_cache_unified::defrag_sched(float thold) {
// - do not defrag small contexts (i.e. < 2048 tokens)
// - count the padding towards the number of used tokens
const float fragmentation = n >= 2048 ? std::max(0.0f, 1.0f - (float(used + padding)/n)) : 0.0f;
// queue defragmentation for next llama_kv_cache_update
if (fragmentation > thold) {
LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
do_defrag = true;
}
}
void llama_kv_cache_unified::set_full() {
n = size;
}
llama_sbatch llama_kv_cache_unified::sbatch_init(
const llama_batch & batch,
bool logits_all) {
return llama_sbatch(batch, batch.n_embd, true, logits_all);
}
llama_ubatch llama_kv_cache_unified::ubatch_next(
llama_sbatch & sbatch,
uint32_t n_ubatch,
bool embd_pooled) const {
GGML_UNUSED(embd_pooled);
return sbatch.split_simple(n_ubatch);
}
bool llama_kv_cache_unified::find_slot(
const llama_ubatch & ubatch) {
const uint32_t n_tokens = ubatch.n_tokens;
const uint32_t n_seqs = ubatch.n_seqs;
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
// sanity check
return n >= n_seqs;
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (head > used + 2*ubatch.n_tokens) {
head = 0;
}
// otherwise, one cell per token.
......@@ -733,24 +533,50 @@ bool llama_kv_cache_unified::find_slot(
pending.ranges.push_back({head, head + n_tokens});
// a heuristic, to avoid attending the full cache if it is not yet utilized
// after enough generations, the benefit from this heuristic disappears
// if we start defragmenting the cache, the benefit from this will be more important
n = std::min(size, std::max(padding, GGML_PAD(cell_max(), padding)));
//printf("n = %5d, used = %5d, head = %5d\n", n, used, head);
return true;
}
uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) const {
// the FA kernels require padding to avoid extra runtime boundary checks
return cparams.flash_attn ? 256u : 32u;
int32_t llama_kv_cache_unified::get_n_tokens() const {
int32_t result = 0;
for (uint32_t i = 0; i < size; i++) {
result += cells[i].seq_id.size();
}
return result;
}
uint32_t llama_kv_cache_unified::cell_max() const {
for (uint32_t i = size; i > 0; --i) {
const llama_kv_cell & cell = cells[i - 1];
int32_t llama_kv_cache_unified::get_used_cells() const {
return used;
}
if (cell.pos >= 0 && !cell.is_empty()) {
return i;
}
bool llama_kv_cache_unified::get_can_shift() const {
return can_shift;
}
llama_pos llama_kv_cache_unified::get_pos_max() const {
llama_pos pos_max = -1;
for (const auto & cell : cells) {
pos_max = std::max(pos_max, cell.pos);
}
return 0;
return pos_max;
}
size_t llama_kv_cache_unified::total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
return size;
}
size_t llama_kv_cache_unified::size_k_bytes() const {
......@@ -773,73 +599,321 @@ size_t llama_kv_cache_unified::size_v_bytes() const {
return size_v_bytes;
}
bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
const uint32_t n_layer = hparams.n_layer;
ggml_tensor * llama_kv_cache_unified::build_rope_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale) const {
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
const uint32_t n_kv = cell_max();
const uint32_t n_used = used;
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
assert(n_used <= n_kv);
const auto & n_rot = hparams.n_rot;
const auto & rope_type = hparams.rope_type;
defrag_info.moves.clear();
// See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor;
// determine which KV cells to move where
//
// cell i moves to ids[i]
//
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
//
std::vector<uint32_t> ids(n_kv, n_kv);
ggml_tensor * tmp;
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
const auto & cell0 = cells[i0];
if (ggml_is_quantized(cur->type)) {
// dequantize to f32 -> RoPE -> quantize back
tmp = ggml_cast(ctx, cur, GGML_TYPE_F32);
if (!cell0.is_empty()) {
ids[i0] = i0;
tmp = ggml_rope_ext(ctx, tmp,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
continue;
}
tmp = ggml_cpy(ctx, tmp, cur);
} else {
// we rotate only the first n_rot dimensions
tmp = ggml_rope_ext_inplace(ctx, cur,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
}
// found a hole - fill it with data from the end of the cache
return tmp;
}
uint32_t nh = 1;
class llm_graph_input_k_shift : public llm_graph_input_i {
public:
llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_k_shift() = default;
// determine the size of the hole
while (i0 + nh < n_used && cells[i0 + nh].is_empty()) {
nh++;
}
void set_input(const llama_ubatch * ubatch) override;
uint32_t nf = 0;
uint32_t is = n_kv - 1;
ggml_tensor * k_shift; // I32 [kv_size]
// starting from the end, find nh non-empty cells
for (; is > i0; --is) {
const auto & cell1 = cells[is];
const llama_kv_cache_unified * kv_self;
};
if (cell1.is_empty() || ids[is] != n_kv) {
continue;
}
void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
GGML_UNUSED(ubatch);
// non-empty cell which is not yet moved
nf++;
if (k_shift) {
assert(ggml_backend_buffer_is_host(k_shift->buffer));
if (nf == nh) {
break;
}
int32_t * data = (int32_t *) k_shift->data;
for (uint32_t i = 0; i < kv_self->size; ++i) {
data[i] = kv_self->cells[i].delta;
}
}
}
// this can only happen if `n_used` is not accurate, which would be a bug
GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_cgraph * gf) const {
auto res = std::make_unique<llm_graph_result>();
nf = 0;
const auto & n_layer = hparams.n_layer;
uint32_t i1 = is;
const auto & n_embd_head_k = hparams.n_embd_head_k;
//const auto & n_embd_head_v = hparams.n_embd_head_v;
// are we moving a continuous block of memory?
bool cont = false;
const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
// go back and move the nf cells to the hole
for (; i1 < n_kv; ++i1) {
//GGML_ASSERT(kv_self->size == n_ctx);
auto inp = std::make_unique<llm_graph_input_k_shift>(this);
inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, cparams.n_ctx);
ggml_set_input(inp->k_shift);
for (uint32_t il = 0; il < n_layer; ++il) {
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const bool is_swa = hparams.is_swa(il);
// note: the swa rope params could become part of the cparams in the future
// if we decide to make them configurable, like the non-sliding ones
const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
ggml_tensor * k =
ggml_view_3d(ctx, k_l[il],
n_embd_head_k, n_head_kv, size,
ggml_row_size(k_l[il]->type, n_embd_head_k),
ggml_row_size(k_l[il]->type, n_embd_k_gqa),
0);
ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
ggml_build_forward_expand(gf, cur);
}
res->add_input(std::move(inp));
return res;
}
llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_cgraph * gf,
const std::vector<struct llama_kv_defrag_move> & moves) const {
auto res = std::make_unique<llm_graph_result>();
#if 0
// CPU defrag
//
// TODO: optimizations are possible:
// - multiple threads
// - avoid copying to the host memory when already there
//
// likely not worth the effort, as we have ggml_graph based defrag
//
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
const uint32_t kv_size = size;
std::vector<uint8_t> buf_k;
std::vector<uint8_t> buf_v;
for (uint32_t il = 0; il < n_layer; ++il) {
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
const size_t v_size_el = ggml_type_size(v_l[il]->type);
const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
buf_k.resize(k_size);
buf_v.resize(v_size);
ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
// batch move [i, i+nm) to [id, id+nm)
// note: cells can move only to a lower index
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t id = ids[i];
if (i == id || id == n_kv) {
continue;
}
uint32_t nm = 1;
while (i + nm < n_kv && ids[i + nm] == id + nm) {
nm++;
}
// move keys
{
const int64_t os = i*k_size_row;
const int64_t od = id*k_size_row;
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
}
// move values (note: they are transposed)
{
const int64_t os = i;
const int64_t od = id;
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
}
}
i += nm - 1;
}
ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
}
#else
for (const auto & move : moves) {
for (uint32_t il = 0; il < hparams.n_layer; ++il) { // NOLINT
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
ggml_tensor * view_k_src = ggml_view_2d(ctx, k_l[il],
n_embd_k_gqa, move.len,
ggml_row_size(k_l[il]->type, n_embd_k_gqa),
ggml_row_size(k_l[il]->type, n_embd_k_gqa*move.src));
ggml_tensor * view_k_dst = ggml_view_2d(ctx, k_l[il],
n_embd_k_gqa, move.len,
ggml_row_size(k_l[il]->type, n_embd_k_gqa),
ggml_row_size(k_l[il]->type, n_embd_k_gqa*move.dst));
ggml_tensor * view_v_src;
ggml_tensor * view_v_dst;
if (cparams.flash_attn) {
// NOTE: the V cache is not transposed when using flash attention
view_v_src = ggml_view_2d(ctx, v_l[il],
n_embd_v_gqa, move.len,
ggml_row_size(v_l[il]->type, n_embd_v_gqa),
ggml_row_size(v_l[il]->type, n_embd_v_gqa*move.dst));
view_v_dst = ggml_view_2d(ctx, v_l[il],
move.len, n_embd_v_gqa,
ggml_row_size(v_l[il]->type, n_embd_v_gqa),
ggml_row_size(v_l[il]->type, move.src));
} else {
view_v_src = ggml_view_2d(ctx, v_l[il],
move.len, n_embd_v_gqa,
ggml_row_size(v_l[il]->type, size),
ggml_row_size(v_l[il]->type, move.src));
view_v_dst = ggml_view_2d(ctx, v_l[il],
move.len, n_embd_v_gqa,
ggml_row_size(v_l[il]->type, size),
ggml_row_size(v_l[il]->type, move.dst));
}
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst));
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst));
}
}
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
#endif
return res;
}
bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_kv = cell_max();
const uint32_t n_used = used;
assert(n_used <= n_kv);
defrag_info.moves.clear();
// determine which KV cells to move where
//
// cell i moves to ids[i]
//
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
//
std::vector<uint32_t> ids(n_kv, n_kv);
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
const auto & cell0 = cells[i0];
if (!cell0.is_empty()) {
ids[i0] = i0;
continue;
}
// found a hole - fill it with data from the end of the cache
uint32_t nh = 1;
// determine the size of the hole
while (i0 + nh < n_used && cells[i0 + nh].is_empty()) {
nh++;
}
uint32_t nf = 0;
uint32_t is = n_kv - 1;
// starting from the end, find nh non-empty cells
for (; is > i0; --is) {
const auto & cell1 = cells[is];
if (cell1.is_empty() || ids[is] != n_kv) {
continue;
}
// non-empty cell which is not yet moved
nf++;
if (nf == nh) {
break;
}
}
// this can only happen if `n_used` is not accurate, which would be a bug
GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
nf = 0;
uint32_t i1 = is;
// are we moving a continuous block of memory?
bool cont = false;
// go back and move the nf cells to the hole
for (; i1 < n_kv; ++i1) {
auto & cell1 = cells[i1];
if (cell1.is_empty() || ids[i1] != n_kv) {
......@@ -854,7 +928,7 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
cells[i0 + nf] = cell1;
// clear the old cell and move the head there
cell1 = llama_kv_cell();
cell1 = kv_cell();
head = n_used;
if (!cont) {
......@@ -885,6 +959,18 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
return true;
}
uint32_t llama_kv_cache_unified::cell_max() const {
for (uint32_t i = size; i > 0; --i) {
const kv_cell & cell = cells[i - 1];
if (cell.pos >= 0 && !cell.is_empty()) {
return i;
}
}
return 0;
}
void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
uint32_t cell_count = 0;
......@@ -1093,7 +1179,7 @@ bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell
clear();
for (uint32_t i = 0; i < cell_count; ++i) {
llama_kv_cell & cell = cells[i];
kv_cell & cell = cells[i];
llama_pos pos;
uint32_t n_seq_id;
......@@ -1116,15 +1202,6 @@ bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell
}
cell.seq_id.insert(seq_id);
if (recurrent) {
int32_t & tail = cells[seq_id].tail;
if (tail != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
return false;
}
tail = i;
}
}
}
......@@ -1132,18 +1209,1037 @@ bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell
used = cell_count;
}
if (recurrent) {
for (uint32_t i = 0; i < cell_count; ++i) {
uint32_t cell_id = head + i;
// make sure the recurrent states will keep their restored state
cells[cell_id].src = cell_id;
return true;
}
bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
uint32_t v_trans;
uint32_t n_layer;
io.read_to(&v_trans, sizeof(v_trans));
io.read_to(&n_layer, sizeof(n_layer));
if (n_layer != hparams.n_layer) {
LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
return false;
}
if (cell_count > size) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
return false;
}
if (this->v_trans != (bool) v_trans) {
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
return false;
}
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
// Read type of key
int32_t k_type_i_ref;
io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
const int32_t k_type_i = (int32_t) k_l[il]->type;
if (k_type_i != k_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
return false;
}
// Read row size of key
uint64_t k_size_row_ref;
io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
if (k_size_row != k_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the keys for the whole cell range
ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
}
}
if (!this->v_trans) {
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Read type of value
int32_t v_type_i_ref;
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t)v_l[il]->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read row size of value
uint64_t v_size_row_ref;
io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
if (v_size_row != v_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the values for the whole cell range
ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
}
}
} else {
// For each layer, read the values for each cell (transposed)
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Read type of value
int32_t v_type_i_ref;
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t)v_l[il]->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read element size of value
uint32_t v_size_el_ref;
io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
const size_t v_size_el = ggml_type_size(v_l[il]->type);
if (v_size_el != v_size_el_ref) {
LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
return false;
}
// Read GQA embedding size
uint32_t n_embd_v_gqa_ref;
io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
if (n_embd_v_gqa != n_embd_v_gqa_ref) {
LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
return false;
}
if (cell_count) {
// For each row in the transposed matrix, read the values for the whole cell range
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
const size_t dst_offset = (head + j * size) * v_size_el;
ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
}
}
}
}
return true;
}
bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
//
// llama_kv_cache_recurrent
//
llama_kv_cache_recurrent::llama_kv_cache_recurrent(
const llama_model & model,
ggml_type type_k,
ggml_type type_v,
bool offload,
uint32_t kv_size) : hparams(model.hparams) {
const int32_t n_layer = hparams.n_layer;
LLAMA_LOG_INFO("%s: kv_size = %d, type_k = '%s', type_v = '%s', n_layer = %d\n",
__func__, kv_size, ggml_type_name(type_k), ggml_type_name(type_v), n_layer);
head = 0;
size = kv_size;
used = 0;
this->type_k = type_k;
this->type_v = type_v;
cells.clear();
cells.resize(kv_size);
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
ggml_init_params params = {
/*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
return nullptr;
}
ctx_map[buft] = ctx;
ctxs.emplace_back(ctx);
return ctx;
}
return it->second;
};
k_l.reserve(n_layer);
v_l.reserve(n_layer);
for (int i = 0; i < n_layer; i++) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
const char * dev_name = "CPU";
ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
if (offload) {
auto * dev = model.dev_layer(i);
buft = ggml_backend_dev_buffer_type(dev);
dev_name = ggml_backend_dev_name(dev);
}
LLAMA_LOG_DEBUG("%s, layer %3d: dev = %s\n", __func__, i, dev_name);
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
throw std::runtime_error("failed to create ggml context for kv cache");
}
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
ggml_format_name(k, "cache_k_l%d", i);
ggml_format_name(v, "cache_v_l%d", i);
k_l.push_back(k);
v_l.push_back(v);
}
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
auto * buft = it.first;
auto * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
throw std::runtime_error("failed to allocate buffer for kv cache");
}
ggml_backend_buffer_clear(buf, 0);
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
bufs.emplace_back(buf);
}
{
const size_t memory_size_k = size_k_bytes();
const size_t memory_size_v = size_v_bytes();
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
}
}
void llama_kv_cache_recurrent::clear() {
for (int32_t i = 0; i < (int32_t) size; ++i) {
cells[i].pos = -1;
cells[i].seq_id.clear();
cells[i].src = -1;
cells[i].tail = -1;
}
head = 0;
used = 0;
for (auto & buf : bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
uint32_t new_head = size;
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// models like Mamba or RWKV can't have a state partially erased
if (seq_id >= (int64_t) size) {
// could be fatal
return false;
}
if (0 <= seq_id) {
int32_t & tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
const kv_cell & cell = cells[tail_id];
// partial intersection is invalid
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
return false;
}
// invalidate tails which will be cleared
if (p0 <= cell.pos && cell.pos < p1) {
tail_id = -1;
}
}
} else {
// seq_id is negative, then the range should include everything or nothing
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
return false;
}
}
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].pos >= p0 && cells[i].pos < p1) {
if (seq_id < 0) {
cells[i].seq_id.clear();
} else if (cells[i].has_seq_id(seq_id)) {
cells[i].seq_id.erase(seq_id);
} else {
continue;
}
if (cells[i].is_empty()) {
// keep count of the number of used cells
if (cells[i].pos >= 0) {
used--;
}
cells[i].pos = -1;
cells[i].src = -1;
if (new_head == size) {
new_head = i;
}
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != size && new_head < head) {
head = new_head;
}
return true;
}
void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
if (seq_id_src == seq_id_dst) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
kv_cell & tail_src = cells[seq_id_src];
kv_cell & tail_dst = cells[seq_id_dst];
if (tail_dst.tail >= 0) {
// clear destination seq_id if it wasn't empty
kv_cell & cell_dst = cells[tail_dst.tail];
cell_dst.seq_id.erase(seq_id_dst);
tail_dst.tail = -1;
if (cell_dst.seq_id.empty()) {
cell_dst.pos = -1;
cell_dst.src = -1;
used -= 1;
}
}
if (tail_src.tail >= 0) {
kv_cell & cell_src = cells[tail_src.tail];
cell_src.seq_id.insert(seq_id_dst);
tail_dst.tail = tail_src.tail;
}
}
}
void llama_kv_cache_recurrent::seq_keep(llama_seq_id seq_id) {
uint32_t new_head = size;
for (uint32_t i = 0; i < size; ++i) {
if ((llama_seq_id) i != seq_id) {
cells[i].tail = -1;
}
if (!cells[i].has_seq_id(seq_id)) {
if (cells[i].pos >= 0) {
used--;
}
cells[i].pos = -1;
cells[i].src = -1;
cells[i].seq_id.clear();
if (new_head == size){
new_head = i;
}
} else {
cells[i].seq_id.clear();
cells[i].seq_id.insert(seq_id);
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != size && new_head < head) {
head = new_head;
}
}
void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
if (delta == 0) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over the
if (p0 == p1) {
return;
}
// for Mamba-like or RWKV models, only the pos needs to be shifted
if (0 <= seq_id && seq_id < (int64_t) size) {
const int32_t tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
kv_cell & cell = cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos += delta;
}
}
}
}
void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
if (d == 1) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over the cache.
if (p0 == p1) {
return;
}
// for Mamba-like or RWKV models, only the pos needs to be changed
if (0 <= seq_id && seq_id < (int64_t) size) {
const int32_t tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
kv_cell & cell = cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos /= d;
}
}
}
}
llama_pos llama_kv_cache_recurrent::seq_pos_max(llama_seq_id seq_id) const {
llama_pos result = 0;
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].has_seq_id(seq_id)) {
result = std::max(result, cells[i].pos);
}
}
return result;
}
void llama_kv_cache_recurrent::restore() {
if (pending.ranges.empty()) {
return;
}
seq_rm(-1, -1, -1);
}
void llama_kv_cache_recurrent::commit() {
pending.ranges.clear();
}
bool llama_kv_cache_recurrent::update(llama_context & lctx) {
GGML_UNUSED(lctx);
return false;
}
void llama_kv_cache_recurrent::defrag_sched(float thold) {
GGML_UNUSED(thold);
// noop
}
void llama_kv_cache_recurrent::set_full() {
n = size;
}
llama_sbatch llama_kv_cache_recurrent::sbatch_init(
const llama_batch & batch,
bool logits_all) {
return llama_sbatch(batch, hparams.n_embd, false, logits_all);
}
llama_ubatch llama_kv_cache_recurrent::ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const {
if (embd_pooled) {
// Pooled embeddings cannot be split across ubatches (yet)
return sbatch.split_seq(n_ubatch);
}
return sbatch.split_equal(n_ubatch);
}
bool llama_kv_cache_recurrent::find_slot(
const llama_ubatch & ubatch) {
const uint32_t n_tokens = ubatch.n_tokens;
const uint32_t n_seqs = ubatch.n_seqs;
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (head > used + 2*n_tokens) {
head = 0;
}
// For recurrent state architectures (like Mamba or RWKV),
// each cache cell can store the state for a whole sequence.
// A slot should be always be contiguous.
// can only process batches with an equal number of new tokens in each sequence
GGML_ASSERT(ubatch.equal_seqs);
int32_t min = size - 1;
int32_t max = 0;
// everything should fit if all seq_ids are smaller than the max
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t n_seq_id = ubatch.n_seq_id[s];
for (uint32_t j = 0; j < n_seq_id; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[s][j];
if (seq_id < 0 || (uint32_t) seq_id >= size) {
// too big seq_id
// TODO: would it be possible to resize the cache instead?
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, size);
return false;
}
if (j > 0) {
kv_cell & seq = cells[seq_id];
if (seq.tail >= 0) {
kv_cell & cell = cells[seq.tail];
// clear cells from seq_ids that become shared
// (should not normally happen, but let's handle it anyway)
cell.seq_id.erase(seq_id);
seq.tail = -1;
if (cell.seq_id.empty()) {
cell.pos = -1;
cell.src = -1;
used -= 1;
}
}
}
}
}
#ifndef NDEBUG
{
std::vector<int32_t> tails_verif;
tails_verif.assign(size, -1);
for (uint32_t i = 0; i < size; ++i) {
kv_cell & cell = cells[i];
for (llama_seq_id seq_id : cell.seq_id) {
if (tails_verif[seq_id] != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
}
tails_verif[seq_id] = i;
}
}
for (uint32_t i = 0; i < size; ++i) {
if (tails_verif[i] != cells[i].tail) {
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]);
}
}
}
#endif
// find next empty cell
uint32_t next_empty_cell = head;
for (uint32_t i = 0; i < size; ++i) {
if (next_empty_cell >= size) { next_empty_cell -= size; }
kv_cell & cell = cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
}
// find usable cell range
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
kv_cell & seq_meta = cells[seq_id];
bool has_cell = false;
if (seq_meta.tail >= 0) {
kv_cell & cell = cells[seq_meta.tail];
GGML_ASSERT(cell.has_seq_id(seq_id));
// does this seq_id "own" the cell?
if (cell.seq_id.size() == 1) { has_cell = true; }
}
if (!has_cell) {
kv_cell & empty_cell = cells[next_empty_cell];
GGML_ASSERT(empty_cell.is_empty());
// copy old tail into the empty cell
if (seq_meta.tail >= 0) {
kv_cell & orig_cell = cells[seq_meta.tail];
empty_cell.pos = orig_cell.pos;
empty_cell.src = orig_cell.src;
orig_cell.seq_id.erase(seq_id);
empty_cell.seq_id.insert(seq_id); // will be overwritten
}
seq_meta.tail = next_empty_cell;
// find next empty cell
if (s + 1 < n_seqs) {
next_empty_cell += 1;
for (uint32_t i = 0; i < size; ++i) {
if (next_empty_cell >= size) { next_empty_cell -= size; }
kv_cell & cell = cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
}
}
}
if (min > seq_meta.tail) { min = seq_meta.tail; }
if (max < seq_meta.tail) { max = seq_meta.tail; }
}
// gather and re-order
for (uint32_t s = 0; s < n_seqs; ++s) {
int32_t dst_id = s + min;
int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
if (dst_id != src_id) {
kv_cell & dst_cell = cells[dst_id];
kv_cell & src_cell = cells[src_id];
std::swap(dst_cell.pos, src_cell.pos);
std::swap(dst_cell.src, src_cell.src);
std::swap(dst_cell.seq_id, src_cell.seq_id);
// swap tails (assuming they NEVER overlap)
for (const llama_seq_id seq_id : src_cell.seq_id) {
cells[seq_id].tail = src_id;
}
for (const llama_seq_id seq_id : dst_cell.seq_id) {
cells[seq_id].tail = dst_id;
}
}
}
// update the pos of the used seqs
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
int32_t cell_id = s + min;
kv_cell & cell = cells[cell_id];
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
// What should happen when the pos backtracks or skips a value?
// Clearing the state mid-batch would require special-casing which isn't done.
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
}
cell.pos = last_pos;
cell.seq_id.clear();
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[s][j];
cell.seq_id.insert(seq_id);
cells[seq_id].tail = cell_id;
}
}
// allow getting the range of used cells, from head to head + n
head = min;
n = max - min + 1;
used = std::count_if(cells.begin(), cells.end(),
[](const kv_cell & cell){ return !cell.is_empty(); });
// sanity check
return n >= n_seqs;
}
int32_t llama_kv_cache_recurrent::get_n_tokens() const {
int32_t result = 0;
for (uint32_t i = 0; i < size; i++) {
result += cells[i].seq_id.size();
}
return result;
}
int32_t llama_kv_cache_recurrent::get_used_cells() const {
return used;
}
llama_pos llama_kv_cache_recurrent::get_pos_max() const {
llama_pos pos_max = -1;
for (const auto & cell : cells) {
pos_max = std::max(pos_max, cell.pos);
}
return pos_max;
}
bool llama_kv_cache_recurrent::get_can_shift() const {
return false;
}
int32_t llama_kv_cache_recurrent::s_copy(int i) const {
const uint32_t cell_id = i + head;
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
kv_cell & cell = const_cast<kv_cell &>(cells[cell_id]);
// prevent out-of-bound sources
if (cell.src < 0 || (uint32_t) cell.src >= size) {
cell.src = cell_id;
}
int32_t res = cell.src;
// TODO: do not mutate the KV cache
// ensure copy only happens once
if (cell.src != (int32_t) cell_id) {
cell.src = cell_id;
}
return res;
}
float llama_kv_cache_recurrent::s_mask(int i) const {
const uint32_t cell_id = i + head;
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
kv_cell & cell = const_cast<kv_cell &>(cells[cell_id]);
float res = (float) (cell.src >= 0);
// only clear once
if (cell.src < 0) {
cell.src = cell_id;
}
return res;
}
uint32_t llama_kv_cache_recurrent::cell_max() const {
for (uint32_t i = size; i > 0; --i) {
const kv_cell & cell = cells[i - 1];
if (cell.pos >= 0 && !cell.is_empty()) {
return i;
}
}
return 0;
}
size_t llama_kv_cache_recurrent::total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
return size;
}
size_t llama_kv_cache_recurrent::size_k_bytes() const {
size_t size_k_bytes = 0;
for (const auto & k : k_l) {
size_k_bytes += ggml_nbytes(k);
}
return size_k_bytes;
}
size_t llama_kv_cache_recurrent::size_v_bytes() const {
size_t size_v_bytes = 0;
for (const auto & v : v_l) {
size_v_bytes += ggml_nbytes(v);
}
return size_v_bytes;
}
void llama_kv_cache_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
uint32_t cell_count = 0;
// Count the number of cells with the specified seq_id
// Find all the ranges of cells with this seq id (or all, when -1)
uint32_t cell_range_begin = size;
for (uint32_t i = 0; i < size; ++i) {
const auto & cell = cells[i];
if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
++cell_count;
if (cell_range_begin == size) {
cell_range_begin = i;
}
} else {
if (cell_range_begin != size) {
cell_ranges.emplace_back(cell_range_begin, i);
cell_range_begin = size;
}
}
}
if (cell_range_begin != size) {
cell_ranges.emplace_back(cell_range_begin, size);
}
// DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
uint32_t cell_count_check = 0;
for (const auto & range : cell_ranges) {
cell_count_check += range.second - range.first;
}
GGML_ASSERT(cell_count == cell_count_check);
io.write(&cell_count, sizeof(cell_count));
state_write_meta(io, cell_ranges, seq_id);
state_write_data(io, cell_ranges);
}
void llama_kv_cache_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
uint32_t cell_count;
io.read_to(&cell_count, sizeof(cell_count));
bool res = true;
res = res && state_read_meta(io, cell_count, seq_id);
res = res && state_read_data(io, cell_count);
if (!res) {
if (seq_id == -1) {
clear();
} else {
seq_rm(seq_id, -1, -1);
}
throw std::runtime_error("failed to restore kv cache");
}
}
void llama_kv_cache_recurrent::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
for (const auto & range : cell_ranges) {
for (uint32_t i = range.first; i < range.second; ++i) {
const auto & cell = cells[i];
const llama_pos pos = cell.pos;
const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
io.write(&pos, sizeof(pos));
io.write(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id) {
for (auto seq_id : cell.seq_id) {
io.write(&seq_id, sizeof(seq_id));
}
}
}
}
}
void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
const uint32_t v_trans = 0;
const uint32_t n_layer = hparams.n_layer;
io.write(&v_trans, sizeof(v_trans));
io.write(&n_layer, sizeof(n_layer));
std::vector<uint8_t> tmp_buf;
// Iterate and write all the keys first, each row is a cell
// Get whole range at a time
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
// Write key type
const int32_t k_type_i = (int32_t)k_l[il]->type;
io.write(&k_type_i, sizeof(k_type_i));
// Write row size of key
const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
io.write(&k_size_row, sizeof(k_size_row));
// Read each range of cells of k_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * k_size_row;
io.write_tensor(k_l[il], range.first * k_size_row, buf_size);
}
}
if (!v_trans) {
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Write value type
const int32_t v_type_i = (int32_t)v_l[il]->type;
io.write(&v_type_i, sizeof(v_type_i));
// Write row size of value
const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
io.write(&v_size_row, sizeof(v_size_row));
// Read each range of cells of v_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * v_size_row;
io.write_tensor(v_l[il], range.first * v_size_row, buf_size);
}
}
} else {
// When v is transposed, we also need the element size and get the element ranges from each row
const uint32_t kv_size = size;
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Write value type
const int32_t v_type_i = (int32_t)v_l[il]->type;
io.write(&v_type_i, sizeof(v_type_i));
// Write element size
const uint32_t v_size_el = ggml_type_size(v_l[il]->type);
io.write(&v_size_el, sizeof(v_size_el));
// Write GQA embedding size
io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
// For each row, we get the element values of each cell
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
// Read each range of cells of v_size_el length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
const size_t buf_size = range_size * v_size_el;
io.write_tensor(v_l[il], src_offset, buf_size);
}
}
}
}
}
bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
if (dest_seq_id != -1) {
// single sequence
seq_rm(dest_seq_id, -1, -1);
llama_sbatch sbatch;
llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
batch.n_tokens = cell_count;
batch.n_seq_tokens = cell_count;
batch.n_seqs = 1;
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id != 0) {
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
return false;
}
batch.pos[i] = pos;
}
batch.n_seq_id[0] = 1;
batch.seq_id[0] = &dest_seq_id;
if (!find_slot(batch)) {
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
return false;
}
commit();
// DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
// Assume that this is one contiguous block of cells
GGML_ASSERT(head + cell_count <= size);
GGML_ASSERT(cells[head].pos == batch.pos[0]);
GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]);
GGML_ASSERT(cells[head].has_seq_id(dest_seq_id));
GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id));
} else {
// whole KV cache restore
if (cell_count > size) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
return false;
}
clear();
for (uint32_t i = 0; i < cell_count; ++i) {
kv_cell & cell = cells[i];
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
cell.pos = pos;
for (uint32_t j = 0; j < n_seq_id; ++j) {
llama_seq_id seq_id;
io.read_to(&seq_id, sizeof(seq_id));
// TODO: llama_kv_cache_recurrent should have a notion of max sequences
//if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
if (seq_id < 0) {
//LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id);
return false;
}
cell.seq_id.insert(seq_id);
int32_t & tail = cells[seq_id].tail;
if (tail != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
return false;
}
tail = i;
}
}
head = 0;
used = cell_count;
}
for (uint32_t i = 0; i < cell_count; ++i) {
uint32_t cell_id = head + i;
// make sure the recurrent states will keep their restored state
cells[cell_id].src = cell_id;
}
return true;
}
bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
uint32_t v_trans;
uint32_t n_layer;
io.read_to(&v_trans, sizeof(v_trans));
......@@ -1157,7 +2253,7 @@ bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
return false;
}
if (v_trans != (bool) v_trans) {
if (false != (bool) v_trans) {
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
return false;
}
......@@ -1309,7 +2405,7 @@ void llama_kv_cache_view_update(llama_kv_cache_view * view, const llama_kv_cache
view->cells_sequences = (llama_seq_id *)p;
}
const std::vector<llama_kv_cell> & kv_cells = kvu->cells;
const std::vector<llama_kv_cache_unified::kv_cell> & kv_cells = kvu->cells;
llama_kv_cache_view_cell * c_curr = view->cells;
llama_seq_id * cs_curr = view->cells_sequences;
int32_t used_cells = 0;
......
......@@ -2,32 +2,72 @@
#include "llama.h"
#include "llama-io.h"
#include "llama-graph.h"
#include "llama-memory.h"
#include "ggml-cpp.h"
#include <functional>
#include <set>
#include <vector>
struct llama_cparams;
struct llama_hparams;
struct llama_ubatch;
struct llama_sbatch;
struct llama_model;
struct llama_context;
struct llama_kv_cache : public llama_memory_i {
using llama_memory_i::llama_memory_i;
virtual ~llama_kv_cache() = default;
virtual void restore() = 0; // call if batch processing fails - restores the cache state
virtual void commit() = 0; // call after successful batch processing - clears any pending state
// call if batch processing fails - restores the cache state
virtual void restore() = 0;
virtual int32_t get_n_tokens() const = 0;
virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache
// call after successful batch processing - clears any pending state
virtual void commit() = 0;
virtual bool get_can_shift() const = 0;
// process any pending defrag/shift/etc. operations
// optionally call once before processing a new batch
virtual bool update(llama_context & lctx) = 0;
// schedule a defrag if the fragmentation threshold is exceeded. otherwise, do nothing
virtual void defrag_sched(float thold) = 0;
// simulate full cache, used for allocating worst-case compute buffers
virtual void set_full() = 0;
//
// batch processing
//
virtual llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) = 0;
// different KV caches require different batch splitting strategies
virtual llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const = 0;
// find an empty slot of size "n_tokens" in the cache
virtual bool find_slot(const llama_ubatch & batch) = 0;
// getters
virtual int32_t get_n_tokens() const = 0;
virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache
virtual llama_pos get_pos_max() const = 0;
virtual bool get_can_shift() const = 0;
bool get_can_edit() const override { return get_can_shift(); }
//
// state write/read
//
virtual void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const = 0;
virtual void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) = 0;
};
//
// llama_kv_cache_guard
//
struct llama_kv_cache_guard {
llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {}
......@@ -42,7 +82,7 @@ struct llama_kv_cache_guard {
private:
llama_kv_cache * kv;
};
// block of KV slots to move when defragging
struct llama_kv_defrag_move {
uint32_t src;
......@@ -50,65 +90,50 @@ struct llama_kv_defrag_move {
uint32_t len;
};
struct llama_kv_cell {
llama_pos pos = -1;
llama_pos delta = 0;
int32_t src = -1; // used by recurrent state models to copy states
int32_t tail = -1;
//
// llama_kv_cache_unified
//
std::set<llama_seq_id> seq_id;
// TODO: add notion of max sequences
class llama_kv_cache_unified : public llama_kv_cache {
public:
struct kv_cell {
llama_pos pos = -1;
llama_pos delta = 0;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
std::set<llama_seq_id> seq_id;
bool is_empty() const {
return seq_id.empty();
}
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
bool is_same_seq(const llama_kv_cell & other) const {
return seq_id == other.seq_id;
}
};
bool is_empty() const {
return seq_id.empty();
}
// ring-buffer of cached KV data
// TODO: pimpl
// TODO: add notion of max sequences
class llama_kv_cache_unified : public llama_kv_cache {
public:
// can be used to query data from the model if needed
struct callbacks {
std::function<ggml_tensor * (uint32_t n_ctx_per_seq, int il)> get_rope_factors;
bool is_same_seq(const kv_cell & other) const {
return seq_id == other.seq_id;
}
};
llama_kv_cache_unified(
const llama_hparams & hparams,
callbacks cbs);
static uint32_t get_padding(const llama_cparams & cparams);
virtual ~llama_kv_cache_unified() = default;
// TODO: become constructor
bool init(
const llama_model & model, // TODO: do not reference the model
const llama_cparams & cparams,
llama_kv_cache_unified(
const llama_model & model,
ggml_type type_k,
ggml_type type_v,
bool v_trans,
bool offload,
uint32_t kv_size,
bool offload);
uint32_t padding);
int32_t get_n_tokens() const override;
int32_t get_used_cells() const override;
~llama_kv_cache_unified() = default;
size_t total_size() const;
// TODO: better data structures to reduce the cost of this operation
llama_pos pos_max() const;
//
// llama_memory_i
//
void clear() override;
void defrag() override;
virtual void restore() override;
virtual void commit() override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
......@@ -118,25 +143,76 @@ public:
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
bool get_can_shift() const override;
//
// llama_kv_cache
//
void restore() override;
void commit() override;
bool update(llama_context & ctx) override;
void defrag_sched(float thold) override;
void set_full() override;
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
// find an empty slot of size "n_tokens" in the cache
// updates the cache head
// Note: On success, it's important that cache.head points
// to the first cell of the slot.
bool find_slot(const llama_ubatch & batch);
bool find_slot(const llama_ubatch & batch) override;
// TODO: maybe not needed
uint32_t get_padding(const llama_cparams & cparams) const;
int32_t get_n_tokens() const override;
int32_t get_used_cells() const override;
// find how many cells are currently in use
uint32_t cell_max() const;
// TODO: better data structures to reduce the cost of this operation
llama_pos get_pos_max() const override;
size_t size_k_bytes() const;
size_t size_v_bytes() const;
bool get_can_shift() const override;
// defrag
// state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
// Note: The value of head isn't only used to optimize searching
// for a free KV slot. llama_decode_impl also uses it, so it
// cannot be freely changed after a slot has been allocated.
uint32_t head = 0;
uint32_t size = 0;
uint32_t used = 0; // used cells (i.e. at least one seq_id)
// computed before each graph build
uint32_t n = 0;
std::vector<kv_cell> cells;
std::vector<ggml_tensor *> k_l; // per layer
std::vector<ggml_tensor *> v_l;
private:
const llama_model & model;
const llama_hparams & hparams;
bool has_shift = false;
bool do_defrag = false;
bool v_trans = true; // the value tensor is transposed
bool can_shift = false;
// required padding
uint32_t padding = 1;
ggml_type type_k = GGML_TYPE_F16;
ggml_type type_v = GGML_TYPE_F16;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
// defrag
struct {
std::vector<llama_kv_defrag_move> moves;
} defrag_info;
......@@ -145,7 +221,6 @@ public:
bool defrag_prepare(int32_t n_max_nodes);
// commit/restore cache
struct slot_range {
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
uint32_t c1 = 0;
......@@ -156,25 +231,125 @@ public:
std::vector<slot_range> ranges;
} pending;
// state write/load
// find how many cells are currently in use
uint32_t cell_max() const;
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const;
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1);
size_t total_size() const;
// members
size_t size_k_bytes() const;
size_t size_v_bytes() const;
const llama_hparams & hparams;
ggml_tensor * build_rope_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale) const;
llm_graph_result_ptr build_graph_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_cgraph * gf) const;
llm_graph_result_ptr build_graph_defrag(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_cgraph * gf,
const std::vector<llama_kv_defrag_move> & moves) const;
callbacks cbs;
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
bool has_shift = false;
bool do_defrag = false;
bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
};
// TODO: remove this and implement llama_kv_cache_recurrent instead
bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
//
// llama_kv_cache_recurrent
//
bool v_trans = true; // the value tensor is transposed
bool can_shift = false;
class llama_kv_cache_recurrent : public llama_kv_cache {
public:
struct kv_cell {
llama_pos pos = -1;
int32_t src = -1; // used to copy states
int32_t tail = -1;
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
bool is_empty() const {
return seq_id.empty();
}
bool is_same_seq(const kv_cell & other) const {
return seq_id == other.seq_id;
}
};
llama_kv_cache_recurrent(
const llama_model & model,
ggml_type type_k,
ggml_type type_v,
bool offload,
uint32_t kv_size);
~llama_kv_cache_recurrent() = default;
//
// llama_memory_i
//
void clear() override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
void seq_keep(llama_seq_id seq_id) override;
void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override;
void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
//
// llama_kv_cache
//
void restore() override;
void commit() override;
bool update(llama_context & lctx) override;
void defrag_sched(float thold) override;
void set_full() override;
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
bool find_slot(const llama_ubatch & batch) override;
int32_t get_n_tokens() const override;
int32_t get_used_cells() const override;
// TODO: better data structures to reduce the cost of this operation
llama_pos get_pos_max() const override;
bool get_can_shift() const override;
// TODO: temporary methods - they are not really const as they do const_cast<>, fix this
int32_t s_copy(int i) const;
float s_mask(int i) const;
// state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
// Note: The value of head isn't only used to optimize searching
// for a free KV slot. llama_decode_impl also uses it, so it
......@@ -186,18 +361,41 @@ public:
// computed before each graph build
uint32_t n = 0;
std::vector<llama_kv_cell> cells;
std::vector<kv_cell> cells;
std::vector<ggml_tensor *> k_l; // per layer
std::vector<ggml_tensor *> v_l;
private:
//const llama_model & model;
const llama_hparams & hparams;
// commit/restore cache
// TODO: rework for recurrent cache
struct slot_range {
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
uint32_t c1 = 0;
};
// pending cell updates that are not yet committed
struct {
std::vector<slot_range> ranges;
} pending;
ggml_type type_k = GGML_TYPE_F16;
ggml_type type_v = GGML_TYPE_F16;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
// find how many cells are currently in use
uint32_t cell_max() const;
size_t total_size() const;
size_t size_k_bytes() const;
size_t size_v_bytes() const;
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
......@@ -205,11 +403,6 @@ private:
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
};
// TODO: temporary reusing llama_kv_cache_unified -- implement recurrent cache and simplify llama_kv_cache_unified
//class llama_kv_cache_recurrent : public llama_kv_cache_unified {
//public:
// using llama_kv_cache_unified::llama_kv_cache_unified;
//};
//
// kv cache view
......
......@@ -2,12 +2,22 @@
#include "llama.h"
struct llama_memory_params {
// kv cache
ggml_type type_k;
ggml_type type_v;
// parameters for other types of memory
// ...
};
// general concept of LLM memory
// the KV cache is a type of LLM memory, but there can be other types
class llama_memory_i {
public:
virtual ~llama_memory_i() = default;
virtual void clear() = 0;
virtual void defrag() = 0;
virtual bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) = 0;
virtual void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) = 0;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment