• Jeffrey Morgan's avatar
    Re-introduce the `llama` package (#5034) · 96efd905
    Jeffrey Morgan authored
    
    
    * Re-introduce the llama package
    
    This PR brings back the llama package, making it possible to call llama.cpp and
    ggml APIs from Go directly via CGo. This has a few advantages:
    
    - C APIs can be called directly from Go without needing to use the previous
      "server" REST API
    - On macOS and for CPU builds on Linux and Windows, Ollama can be built without
      a go generate ./... step, making it easy to get up and running to hack on
      parts of Ollama that don't require fast inference
    - Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
      takes <5 min on a fast CPU)
    - No git submodule making it easier to clone and build from source
    
    This is a big PR, but much of it is vendor code except for:
    
    - llama.go CGo bindings
    - example/: a simple example of running inference
    - runner/: a subprocess server designed to replace the llm/ext_server package
    - Makefile an as minimal as possible Makefile to build the runner package for
      different targets (cpu, avx, avx2, cuda, rocm)
    Co-authored-by: default avatarJesse Gross <jesse@ollama.com>
    Co-authored-by: default avatarDaniel Hiltgen <daniel@ollama.com>
    
    * cache: Clear old KV cache entries when evicting a slot
    
    When forking a cache entry, if no empty slots are available we
    evict the least recently used one and copy over the KV entries
    from the closest match. However, this copy does not overwrite
    existing values but only adds new ones. Therefore, we need to
    clear the old slot first.
    
    This change fixes two issues:
     - The KV cache fills up and runs out of space even though we think
       we are managing it correctly
     - Performance gets worse over time as we use new cache entries that
       are not hot in the processor caches
    
    * doc: explain golang objc linker warning (#6830)
    
    * llama: gather transitive dependencies for rocm for dist packaging (#6848)
    
    * Refine go server makefiles to be more DRY (#6924)
    
    This breaks up the monolithic Makefile for the Go based runners into a
    set of utility files as well as recursive Makefiles for the runners.
    Files starting with the name "Makefile" are buildable, while files that
    end with ".make" are utilities to include in other Makefiles.  This
    reduces the amount of nearly identical targets and helps set a pattern
    for future community contributions for new GPU runner architectures.
    
    When we are ready to switch over to the Go runners, these files should
    move to the top of the repo, and we should add targets for the main CLI,
    as well as a helper "install" (put all the built binaries on the local
    system in a runnable state) and "dist" target (generate the various
    tar/zip files for distribution) for local developer use.
    
    * llama: don't create extraneous directories (#6988)
    
    * llama: Exercise the new build in CI (#6989)
    
    Wire up some basic sanity testing in CI for the Go runner.  GPU runners are not covered yet.
    
    * llama: Refine developer docs for Go server (#6842)
    
    This enhances the documentation for development focusing on the new Go
    server.  After we complete the transition further doc refinements
    can remove the "transition" discussion.
    
    * runner.go: Allocate batches for all sequences during init
    
    We should tell the model that we could have full batches for all
    sequences. We already do this when we allocate the batches but it was
    missed during initialization.
    
    * llama.go: Don't return nil from Tokenize on zero length input
    
    Potentially receiving nil in a non-error condition is surprising to
    most callers - it's better to return an empty slice.
    
    * runner.go: Remove stop tokens from cache
    
    If the last token is EOG then we don't return this and it isn't
    present in the cache (because it was never submitted to Decode).
    This works well for extending the cache entry with a new sequence.
    
    However, for multi-token stop sequences, we won't return any of the
    tokens but all but the last one will be in the cache. This means
    when the conversation continues the cache will contain tokens that
    don't overlap with the new prompt.
    
    This works (we will pick up the portion where there is overlap) but
    it causes unnecessary cache thrashing because we will fork the original
    cache entry as it is not a perfect match.
    
    By trimming the cache to the tokens that we actually return this
    issue can be avoided.
    
    * runner.go: Simplify flushing of pending tokens
    
    * runner.go: Update TODOs
    
    * runner.go: Don't panic when processing sequences
    
    If there is an error processing a sequence, we should return a
    clean HTTP error back to Ollama rather than panicing. This will
    make us more resilient to transient failures.
    
    Panics can still occur during startup as there is no way to serve
    requests if that fails.
    Co-authored-by: default avatarjmorganca <jmorganca@gmail.com>
    
    * runner.go: More accurately capture timings
    
    Currently prompt processing time doesn't capture the that it takes
    to tokenize the input, only decoding time. We should capture the
    full process to more accurately reflect reality. This is especially
    true once we start processing images where the initial processing
    can take significant time. This is also more consistent with the
    existing C++ runner.
    
    * runner.go: Support for vision models
    
    In addition to bringing feature parity with the C++ runner, this also
    incorporates several improvements:
     - Cache prompting works with images, avoiding the need to re-decode
       embeddings for every message in a conversation
     - Parallelism is supported, avoiding the need to restrict to one
       sequence at a time. (Though for now Ollama will not schedule
       them while we might need to fall back to the old runner.)
    Co-authored-by: default avatarjmorganca <jmorganca@gmail.com>
    
    * runner.go: Move Unicode checking code and add tests
    
    * runner.go: Export external cache members
    
    Runner and cache are in the same package so the change doesn't
    affect anything but it is more internally consistent.
    
    * runner.go: Image embedding cache
    
    Generating embeddings from images can take significant time (on
    my machine between 100ms and 8s depending on the model). Although
    we already cache the result of decoding these images, the embeddings
    need to be regenerated every time. This is not necessary if we get
    the same image over and over again, for example, during a conversation.
    
    This currently uses a very small cache with a very simple algorithm
    but it is easy to improve as is warranted.
    
    * llama: catch up on patches
    
    Carry forward solar-pro and cli-unicode patches
    
    * runner.go: Don't re-allocate memory for every batch
    
    We can reuse memory allocated from batch to batch since batch
    size is fixed. This both saves the cost of reallocation as well
    keeps the cache lines hot.
    
    This results in a roughly 1% performance improvement for token
    generation with Nvidia GPUs on Linux.
    
    * runner.go: Default to classic input cache policy
    
    The input cache as part of the go runner implemented a cache
    policy that aims to maximize hit rate in both single and multi-
    user scenarios. When there is a cache hit, the response is
    very fast.
    
    However, performance is actually slower when there is an input
    cache miss due to worse GPU VRAM locality. This means that
    performance is generally better overall for multi-user scenarios
    (better input cache hit rate, locality was relatively poor already).
    But worse for single users (input cache hit rate is about the same,
    locality is now worse).
    
    This defaults the policy back to the old one to avoid a regression
    but keeps the new one available through an environment variable
    OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
    to improve this in the future to get the best of both worlds
    without user configuration.
    
    For inputs that result in cache misses, on Nvidia/Linux this
    change improves performance by 31% for prompt processing and
    13% for token generation.
    
    * runner.go: Increase size of response channel
    
    Generally the CPU can easily keep up with handling reponses that
    are generated but there's no reason not to let generation continue
    and handle things in larger batches if needed.
    
    * llama: Add CI to verify all vendored changes have patches (#7066)
    
    Make sure we don't accidentally merge changes in the vendored code
    that aren't also reflected in the patches.
    
    * llama: adjust clip patch for mingw utf-16 (#7065)
    
    * llama: adjust clip patch for mingw utf-16
    
    * llama: ensure static linking of runtime libs
    
    Avoid runtime dependencies on non-standard libraries
    
    * runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
    
    These are two features that are shown on llama.cpp's system info
    that are currently different between the two runners. On my test
    systems the performance difference is very small to negligible
    but it is probably still good to equalize the features.
    
    * llm: Don't add BOS/EOS for tokenize requests
    
    This is consistent with what server.cpp currently does. It affects
    things like token processing counts for embedding requests.
    
    * runner.go: Don't cache prompts for embeddings
    
    Our integration with server.cpp implicitly disables prompt caching
    because it is not part of the JSON object being parsed, this makes
    the Go runner behavior similarly.
    
    Prompt caching has been seen to affect the results of text completions
    on certain hardware. The results are not wrong either way but they
    are non-deterministic. However, embeddings seem to be affected even
    on hardware that does not show this behavior for completions. For
    now, it is best to maintain consistency with the existing behavior.
    
    * runner.go: Adjust debug log levels
    
    Add system info printed at startup and quiet down noisier logging.
    
    * llama: fix compiler flag differences (#7082)
    
    Adjust the flags for the new Go server to more closely match the
    generate flow
    
    * llama: refine developer docs (#7121)
    
    * llama: doc and example clean up (#7122)
    
    * llama: doc and example clean up
    
    * llama: Move new dockerfile into llama dir
    
    Temporary home until we fully transition to the Go server
    
    * llama: runner doc cleanup
    
    * llama.go: Add description for Tokenize error case
    
    ---------
    Co-authored-by: default avatarJesse Gross <jesse@ollama.com>
    Co-authored-by: default avatarDaniel Hiltgen <daniel@ollama.com>
    Co-authored-by: default avatarDaniel Hiltgen <dhiltgen@users.noreply.github.com>
    96efd905
clip.cpp 112 KB