convert_mllama.go 4.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
package convert

import (
	"strings"

	"github.com/ollama/ollama/fs/ggml"
	"github.com/pdevine/tensor"
	"github.com/pdevine/tensor/native"
)

type mllamaModel struct {
	ModelParameters
	TextModel struct {
		llamaModel

		CrossAttentionLayers []int32 `json:"cross_attention_layers"`
	} `json:"text_config"`
	VisionModel struct {
		NumHiddenLayers           uint32  `json:"num_hidden_layers"`
		NumGlobalLayers           uint32  `json:"num_global_layers"`
		IntermediateLayersIndices []int32 `json:"intermediate_layers_indices"`

		HiddenSize       uint32 `json:"hidden_size"`
		IntermediateSize uint32 `json:"intermediate_size"`

		AttentionHeads uint32 `json:"attention_heads"`

		ImageSize   uint32  `json:"image_size"`
		PatchSize   uint32  `json:"patch_size"`
		NumChannels uint32  `json:"num_channels"`
		MaxNumTiles uint32  `json:"max_num_tiles"`
		NormEpsilon float32 `json:"norm_eps"`
		RopeTheta   float32 `json:"rope.freq_base"`
	} `json:"vision_config"`
}

func (m *mllamaModel) KV(t *Tokenizer) ggml.KV {
	kv := m.ModelParameters.KV(t)
	kv["general.architecture"] = "mllama"

	for k, v := range m.TextModel.KV(t) {
		if strings.HasPrefix(k, "llama.") {
			kv[strings.ReplaceAll(k, "llama.", "mllama.")] = v
		}
	}

	kv["mllama.attention.cross_attention_layers"] = m.TextModel.CrossAttentionLayers

	kv["mllama.vision.block_count"] = m.VisionModel.NumHiddenLayers
	kv["mllama.vision.global.block_count"] = m.VisionModel.NumGlobalLayers
	kv["mllama.vision.intermediate_layers_indices"] = m.VisionModel.IntermediateLayersIndices

	kv["mllama.vision.embedding_length"] = m.VisionModel.HiddenSize
	kv["mllama.vision.feed_forward_length"] = m.VisionModel.IntermediateSize

	kv["mllama.vision.attention.head_count"] = m.VisionModel.AttentionHeads
	kv["mllama.vision.attention.layer_norm_epsilon"] = m.VisionModel.NormEpsilon

	kv["mllama.vision.image_size"] = m.VisionModel.ImageSize
	kv["mllama.vision.patch_size"] = m.VisionModel.PatchSize
	kv["mllama.vision.max_num_tiles"] = m.VisionModel.MaxNumTiles
	kv["mllama.vision.num_channels"] = m.VisionModel.NumChannels

	return kv
}

func (m *mllamaModel) Replacements() []string {
	return append(
		m.TextModel.Replacements(),
		"language_model.", "",
		"gate_attn", "attn_gate",
		"gate_ffn", "ffn_gate",
		"cross_attn.", "cross_attn_",
		"vision_model", "v",
		"class_embedding", "class_embd",
		"patch_embedding", "patch_embd",
		"gated_positional_embedding.tile_embedding", "tile_position_embd",
		"gated_positional_embedding.embedding", "position_embd.weight",
		"gated_positional_embedding", "position_embd",
		"embedding.weight", "weight",
		"pre_tile_positional_embedding", "pre_tile_position_embd",
		"post_tile_positional_embedding", "post_tile_position_embd",
		"layernorm_pre", "pre_ln",
		"layernorm_post", "post_ln",
		"global_transformer.layers", "global.blk",
		"transformer.layers", "blk",
		"mlp.fc1", "ffn_up",
		"mlp.fc2", "ffn_down",
		"multi_modal_projector", "mm.0",
	)
}

func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
	var out []*ggml.Tensor
	var text []Tensor
	for _, t := range ts {
		if t.Name() == "v.position_embd.gate" {
			for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
				tt := t.Clone()
				tt.SetRepacker(m.repack(name))
				out = append(out, &ggml.Tensor{
					Name:     name,
					Kind:     t.Kind(),
					Shape:    t.Shape(),
					WriterTo: tt,
				})
			}
		} else if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
			t.SetRepacker(m.repack(t.Name()))
			out = append(out, &ggml.Tensor{
				Name:     t.Name(),
				Kind:     t.Kind(),
				Shape:    t.Shape(),
				WriterTo: t,
			})
		} else if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
			out = append(out, &ggml.Tensor{
				Name:     t.Name(),
				Kind:     t.Kind(),
				Shape:    t.Shape(),
				WriterTo: t,
			})
		} else {
			text = append(text, t)
		}
	}

	return append(out, m.TextModel.Tensors(text)...)
}

func (m *mllamaModel) repack(name string) Repacker {
	return func(_ string, data []float32, shape []uint64) (_ []float32, err error) {
		dims := make([]int, len(shape))
		for i, dim := range shape {
			dims[i] = int(dim)
		}

		var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))

		t, err = tensor.Tanh(t)
		if err != nil {
			return nil, err
		}

		if name == "v.position_embd.gate" {
			t, err = tensor.Sub(float32(1), t)
			if err != nil {
				return nil, err
			}
		}

		t = tensor.Materialize(t)
		// flatten tensor so it can be return as a vector
		if err := t.Reshape(t.Shape().TotalSize()); err != nil {
			return nil, err
		}

		return native.VectorF32(t.(*tensor.Dense))
	}
}