0023-MXFP4.patch 60 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Daniel Hiltgen <daniel@ollama.com>
Date: Mon, 21 Jul 2025 12:06:13 -0700
Subject: [PATCH] MXFP4

Partial implementation of MXFP4 tensor type
---
 ggml/include/ggml.h                   |   2 +-
 ggml/src/ggml-common.h                |   7 +
 ggml/src/ggml-cpu/ggml-cpu-quants.h   |   2 +
 ggml/src/ggml-cpu/ggml-cpu.c          |   5 +
 ggml/src/ggml-cpu/ops.cpp             |   1 +
 ggml/src/ggml-cpu/vec.cpp             |  90 ++++++++
 ggml/src/ggml-cpu/vec.h               |   2 +
 ggml/src/ggml-cuda/convert.cu         |  80 +++++++
 ggml/src/ggml-cuda/ggml-cuda.cu       |  16 +-
 ggml/src/ggml-cuda/mmvmxfp4.cu        | 307 ++++++++++++++++++++++++++
 ggml/src/ggml-cuda/mmvmxfp4.cuh       |   9 +
 ggml/src/ggml-metal/ggml-metal-impl.h |   3 +
 ggml/src/ggml-metal/ggml-metal.m      |  25 ++-
 ggml/src/ggml-metal/ggml-metal.metal  | 173 ++++++++++++++-
 ggml/src/ggml-quants.c                | 142 +++++++++++-
 ggml/src/ggml-quants.h                |   6 +
 ggml/src/ggml.c                       |  13 +-
 17 files changed, 868 insertions(+), 15 deletions(-)
 create mode 100644 ggml/src/ggml-cuda/mmvmxfp4.cu
 create mode 100644 ggml/src/ggml-cuda/mmvmxfp4.cuh

diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
index e91dedf1..873baa24 100644
--- a/ggml/include/ggml.h
+++ b/ggml/include/ggml.h
@@ -353,7 +353,7 @@ extern "C" {
         GGML_TYPE_F16     = 1,
         GGML_TYPE_Q4_0    = 2,
         GGML_TYPE_Q4_1    = 3,
-        // GGML_TYPE_Q4_2 = 4, support has been removed
+        GGML_TYPE_MXFP4   = 4, // Formerly removed type GGML_TYPE_Q4_2
         // GGML_TYPE_Q4_3 = 5, support has been removed
         GGML_TYPE_Q5_0    = 6,
         GGML_TYPE_Q5_1    = 7,
diff --git a/ggml/src/ggml-common.h b/ggml/src/ggml-common.h
index 086c822d..e0d71451 100644
--- a/ggml/src/ggml-common.h
+++ b/ggml/src/ggml-common.h
@@ -417,6 +417,13 @@ typedef struct {
 } block_iq4_xs;
 static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding");
 
+#define MXFP4 32
+typedef struct {
+    uint8_t d;              // scale E8M0 float 
+    uint8_t qs[MXFP4 / 2];  // (32) 4 bit elements E2M1 float
+} block_mxfp4;
+static_assert(sizeof(block_mxfp4) == sizeof(uint8_t) + MXFP4/2, "wrong mxfp4 block size/padding");
+
 #endif // GGML_COMMON_DECL
 #endif // GGML_COMMON_DECL
 
diff --git a/ggml/src/ggml-cpu/ggml-cpu-quants.h b/ggml/src/ggml-cpu/ggml-cpu-quants.h
index e33d9d47..6a25d062 100644
--- a/ggml/src/ggml-cpu/ggml-cpu-quants.h
+++ b/ggml/src/ggml-cpu/ggml-cpu-quants.h
@@ -58,6 +58,8 @@ void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const
 void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
 void ggml_vec_dot_iq3_s_q8_K  (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
 
+void ggml_vec_dot_mxfp4(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc);
+
 #ifdef __cplusplus
 }
 #endif
diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c
index 2462d2b8..bff9c426 100644
--- a/ggml/src/ggml-cpu/ggml-cpu.c
+++ b/ggml/src/ggml-cpu/ggml-cpu.c
@@ -362,6 +362,11 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
         .vec_dot_type             = GGML_TYPE_Q8_K,
         .nrows                    = 1,
     },
+    [GGML_TYPE_MXFP4] = {
+        .vec_dot                  = (ggml_vec_dot_t) ggml_vec_dot_mxfp4,
+        .vec_dot_type             = GGML_TYPE_F32,
+        .nrows                    = 1,
+    },
 };
 
 const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) {
diff --git a/ggml/src/ggml-cpu/ops.cpp b/ggml/src/ggml-cpu/ops.cpp
index 654e2f28..be0aa683 100644
--- a/ggml/src/ggml-cpu/ops.cpp
+++ b/ggml/src/ggml-cpu/ops.cpp
@@ -4965,6 +4965,7 @@ void ggml_compute_forward_clamp(
         case GGML_TYPE_I32:
         case GGML_TYPE_I64:
         case GGML_TYPE_F64:
+        case GGML_TYPE_MXFP4:
         case GGML_TYPE_COUNT:
             {
                 GGML_ABORT("fatal error");
diff --git a/ggml/src/ggml-cpu/vec.cpp b/ggml/src/ggml-cpu/vec.cpp
index 02d40618..ec3ec9b1 100644
--- a/ggml/src/ggml-cpu/vec.cpp
+++ b/ggml/src/ggml-cpu/vec.cpp
@@ -250,3 +250,93 @@ ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, fl
     }
     return sum = (ggml_float)logf(sum);
 }
+
+#define MXFP4 32
+typedef struct {
+    uint8_t d;              // scale E8M0 float 
+    uint8_t qs[MXFP4 / 2];  // (32) 4 bit elements E2M1 float
+} block_mxfp4;
+static_assert(sizeof(block_mxfp4) == sizeof(uint8_t) + MXFP4/2, "wrong mxfp4 block size/padding");
+#define MXFP4_VALS {0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 0.0, -0.5, -1.0, -1.5, -2.0, -3.0, -4.0, -6.0}
+
+void ggml_vec_dot_mxfp4(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc) {
+    assert(nrc == 1);
+    GGML_UNUSED(nrc);
+    GGML_UNUSED(bx);
+    GGML_UNUSED(by);
+    GGML_UNUSED(bs);
+    ggml_float mxfp4_table[] = MXFP4_VALS;
+
+#if defined(GGML_SIMD)
+    float sumf = 0.0f;
+    const int np = (n & ~(GGML_F32_STEP - 1));
+    const block_mxfp4 * GGML_RESTRICT xx = (const block_mxfp4 *) vx;
+    GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
+
+    GGML_F32_VEC scalev;
+    GGML_F32_VEC ax[GGML_F32_ARR];
+    GGML_F32_VEC ay[GGML_F32_ARR];
+    for (int i = 0; i < np; i += GGML_F32_STEP) { // ARM: +16  AVX512: +64
+        for (int j = 0; j < GGML_F32_ARR; j++) { // ARM: 0 .. 4 AVX512: 0 .. 4
+            // convert GGML_F32_ARR X elements 
+            const int ib = (i + j*GGML_F32_EPR) / MXFP4;
+            const block_mxfp4 * GGML_RESTRICT x = &xx[ib];
+            union {
+                uint32_t as_bits;
+                float as_value;
+            } scale;
+            scale.as_bits = (((uint32_t)x->d) << 23);
+            scalev = GGML_F32_VEC_SET1(scale.as_value);
+            float xf[GGML_F32_EPR]= {0.f};
+            assert(((i+j*GGML_F32_EPR) % MXFP4)+GGML_F32_ARR < MXFP4 && "block overrun");
+            for (int qi = 0; qi < GGML_F32_EPR/2 ; ++qi) {
+                xf[qi*2] = mxfp4_table[(x->qs[((i+j*GGML_F32_EPR)%MXFP4)/2+qi] & 0xf)];
+                xf[qi*2+1] = mxfp4_table[(x->qs[((i+j*GGML_F32_EPR)%MXFP4)/2+qi] & 0xf0) >> 4];
+            }
+
+            ax[j] = GGML_F32_VEC_MUL(GGML_F32_VEC_LOAD(xf), scalev);
+            ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
+            sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
+        }
+    }
+    GGML_F32_VEC_REDUCE(sumf, sum);
+
+    // leftovers
+    for (int i = np; i < n; i+=2) {
+        const int ib = i / MXFP4;
+        const block_mxfp4 * GGML_RESTRICT x = &xx[ib];
+        union {
+            uint32_t as_bits;
+            float as_value;
+        } scale;
+        scale.as_bits = (((uint32_t)x->d) << 23);
+        sumf += y[i] * scale.as_value * mxfp4_table[(x->qs[(i%MXFP4)/2] & 0xf)];
+        sumf += y[i+1] * scale.as_value * mxfp4_table[(x->qs[(i%MXFP4)/2] & 0xf0) >> 4];
+    }
+
+
+#else // defined(GGML_SIMD)
+    const int nb = n / MXFP4;
+    assert(n % MXFP4 == 0);
+
+    int yi = 0;
+
+    const block_mxfp4 * GGML_RESTRICT xx = (const block_mxfp4 *) vx;
+
+    ggml_float sumf = 0.0;
+    for (int ib = 0; ib < nb; ++ib) {
+        const block_mxfp4 * GGML_RESTRICT x = &xx[ib + 0];
+        union {
+            uint32_t as_bits;
+            float as_value;
+        } scale;
+        scale.as_bits = (((uint32_t)x->d) << 23);
+        for (int i = 0; i < MXFP4/2; ++i) {
+            sumf += mxfp4_table[(x->qs[i] & 0xf)] * (ggml_float)(scale.as_value) * (ggml_float)(y[ib*MXFP4 + i*2]);
+            sumf += mxfp4_table[(x->qs[i] & 0xf0) >> 4] * (ggml_float)(scale.as_value) * (ggml_float)(y[ib*MXFP4 + i*2+1]);
+        }
+    }
+#endif
+
+    *s = sumf;
+}
diff --git a/ggml/src/ggml-cpu/vec.h b/ggml/src/ggml-cpu/vec.h
index 23cbb305..7480ca08 100644
--- a/ggml/src/ggml-cpu/vec.h
+++ b/ggml/src/ggml-cpu/vec.h
@@ -42,6 +42,8 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
 void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc);
 void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc);
 
+void ggml_vec_dot_mxfp4(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc);
+
 void ggml_vec_silu_f32(const int n, float * y, const float * x);
 ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max);
 ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max);
diff --git a/ggml/src/ggml-cuda/convert.cu b/ggml/src/ggml-cuda/convert.cu
index c6dec427..0e016ccc 100644
--- a/ggml/src/ggml-cuda/convert.cu
+++ b/ggml/src/ggml-cuda/convert.cu
@@ -571,6 +571,82 @@ static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t
     dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
 }
 
+// MXFP4 dequantize derived from dequantize_block_q4_0
+template<typename dst_t>
+static __global__ void dequantize_block_mxfp4(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
+    const uint16_t dst_bias = 15;
+    const uint16_t dst_0p5 = 0x3800;
+    const uint16_t dst_m_bits = 10;
+    const int64_t i = blockIdx.x;
+
+    // assume 32 threads
+    const int64_t tid = threadIdx.x;
+    const int64_t il  = tid/8;
+    const int64_t ir  = tid%8;
+    const int64_t ib = 8*i + ir;
+    if (ib >= nb32) {
+        return;
+    }
+
+    const uint64_t offset = 256*i + MXFP4*ir + 8*il;
+    dst_t * y = yy + offset;
+
+    const block_mxfp4 * x = (const block_mxfp4 *)vx + ib;
+    union {
+        uint32_t as_bits;
+        float as_value;
+    } scale;
+    scale.as_bits = (((uint32_t)x->d) << 23);
+
+    // offset within the block 1/4 chunks (8 items)
+    const uint8_t * q = x->qs + 4*il;
+
+    for (int l = 0; l < 4; ++l) {
+        uint16_t em0 = q[l] & 0x07;
+        uint16_t em1 = q[l] & 0x70;
+        // float16 values
+        iq1m_scale_t x0;
+        iq1m_scale_t x1;
+
+        x0.u16 = (em0 << (dst_m_bits - 1)) | ((q[l] & 0x08) << 12);
+        x1.u16 = (em1 << (dst_m_bits - 5)) | ((q[l] & 0x80) << 8);
+
+        // Three cases:
+        // x is normal and non-zero: Correct bias
+        if ((em0 & 0x06) != 0) {
+            x0.u16 = x0.u16 + ((dst_bias - 1) << dst_m_bits);
+        }
+        if ((em1 & 0x60) != 0) {
+            x1.u16 = x1.u16 + ((dst_bias - 1) << dst_m_bits);
+        }
+        // x is subnormal (x == 0bs001 where s is the sign): Map to +-0.5 in the dst type
+        if (em0 == 0x01) {
+            x0.u16 = dst_0p5 | (x0.u16 & 0x8000);
+        }
+        if (em1 == 0x10) {
+            x1.u16 = dst_0p5 | (x1.u16 & 0x8000);
+        }
+        // x is zero, do nothing
+
+        // XXX it looks correct here - but mulmat still gives bad results...
+        // printf("i:%lld ir:%lld il:%lld l:%d y_offset:[%3lld +%d] = %f \n",
+        //     i, ir, il, l, 256*i + 32*ir + 4*il, l*2+ 0, scale * float(x0.f16));
+        // printf("i:%lld ir:%lld il:%lld l:%d y_offset:[%3lld +%d] = %f \n",
+        //     i, ir, il, l, 256*i + 32*ir + 4*il, l*2+ 1, scale * float(x1.f16));
+
+        y[l*2] = scale.as_value * float(x0.f16);
+        y[l*2+1] = scale.as_value * float(x1.f16);
+    }
+}
+
+// derived from dequantize_row_q4_0_cuda
+template<typename dst_t>
+static void dequantize_row_mxfp4_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
+    const int nb32 = k / 32;
+    const int nb = (k + 255) / 256;
+    dequantize_block_mxfp4<<<nb, 32, 0, stream>>>(vx, y, nb32);
+}
+
 template <typename src_t, typename dst_t>
 static __global__ void convert_unary(
         const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t ne00, const int64_t ne01, const int64_t ne02,
@@ -664,6 +740,8 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
             return convert_unary_cont_cuda<float>;
         case GGML_TYPE_BF16:
             return convert_unary_cont_cuda<nv_bfloat16>;
+        case GGML_TYPE_MXFP4:
+            return dequantize_row_mxfp4_cuda;
         default:
             return nullptr;
     }
@@ -713,6 +791,8 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
             return convert_unary_cont_cuda<half>;
         case GGML_TYPE_BF16:
             return convert_unary_cont_cuda<nv_bfloat16>;
+        case GGML_TYPE_MXFP4:
+            return dequantize_row_mxfp4_cuda;
         default:
             return nullptr;
     }
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index 28ccf4be..bb19b06e 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -21,6 +21,7 @@
 #include "ggml-cuda/im2col.cuh"
 #include "ggml-cuda/mmq.cuh"
 #include "ggml-cuda/mmv.cuh"
+#include "ggml-cuda/mmvmxfp4.cuh"
 #include "ggml-cuda/mmvq.cuh"
 #include "ggml-cuda/norm.cuh"
 #include "ggml-cuda/opt-step-adamw.cuh"
@@ -1202,7 +1203,7 @@ static void ggml_cuda_op_mul_mat_cublas(
 
     const int cc = ggml_cuda_info().devices[id].cc;
 
-    const bool use_fp16 = (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT;
+    const bool use_fp16 = (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT && src0->type != GGML_TYPE_MXFP4;
 
     if (src0->type == GGML_TYPE_BF16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) {
         ggml_cuda_pool_alloc<nv_bfloat16> src1_as_bf16(ctx.pool(id));
@@ -1924,7 +1925,11 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
         && src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
     bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear
         && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
-        && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
+        && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE
+        && src0->type != GGML_TYPE_MXFP4;
+    bool use_mul_mat_vec_mxfp4 = src0->type == GGML_TYPE_MXFP4
+        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
+        && src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
     bool use_mul_mat_q     = ggml_is_quantized(src0->type) && !bad_padding_clear
         && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
 
@@ -1978,6 +1983,8 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
         ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, quantize_row_q8_1_cuda);
     } else if (use_mul_mat_q) {
         ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, quantize_mmq_q8_1_cuda);
+    } else if (use_mul_mat_vec_mxfp4) {
+        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_mxfp4, nullptr);
     } else {
         ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, nullptr);
     }
@@ -1997,6 +2004,10 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
     const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
 
     if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+        if (ne2 == 1 && src0->type == GGML_TYPE_MXFP4) {
+            ggml_cuda_mul_mat_vec_mxfp4(ctx, src0, src1, ids, dst);
+            return;
+        }
         if (ne2 == 1) {
             if (ggml_is_quantized(src0->type)) {
                 ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst);
@@ -3056,6 +3067,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
                     case GGML_TYPE_IQ4_NL:
                     case GGML_TYPE_IQ4_XS:
                     case GGML_TYPE_BF16:
+                    case GGML_TYPE_MXFP4:
 #ifdef GGML_USE_MUSA
                         if (a->type == GGML_TYPE_Q3_K) {
                             return false;
diff --git a/ggml/src/ggml-cuda/mmvmxfp4.cu b/ggml/src/ggml-cuda/mmvmxfp4.cu
new file mode 100644
index 00000000..da62062b
--- /dev/null
+++ b/ggml/src/ggml-cuda/mmvmxfp4.cu
@@ -0,0 +1,307 @@
+#include "ggml.h"
+#include "common.cuh"
+#include "mmvmxfp4.cuh"
+
+// MXFP4 implementation derived from mmv.cu float32 code paths
+typedef union {
+    half f16;
+    uint16_t  u16;
+} f16_t;
+
+template <typename type_acc, int block_size> // TODO type_acc unused - consider bf16 support
+static __global__ void mul_mat_vec_mxfp4(
+        const block_mxfp4 * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, float * __restrict__ dst,
+        const int64_t ncols2, const int64_t nchannels_y, const int64_t stride_row,
+        const int64_t channel_ratio, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
+        const int64_t sample_ratio, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst) {
+    const int64_t row         = blockIdx.x;
+    const int64_t channel_dst = blockIdx.y;
+    const int64_t channel_x   = ids ? ids[channel_dst]          : channel_dst / channel_ratio;
+    const int64_t channel_y   = ids ? channel_dst % nchannels_y : channel_dst;
+    const int64_t sample_dst  = blockIdx.z;
+    const int64_t sample_x    = sample_dst / sample_ratio;
+    const int64_t sample_y    = sample_dst;
+    const int     tid         = threadIdx.x;
+    constexpr int warp_size   = ggml_cuda_get_physical_warp_size();
+
+    const uint16_t dst_bias = 15;
+    const uint16_t dst_0p5 = 0x3800;
+    const uint16_t dst_m_bits = 10;
+
+    x   += sample_x  *stride_sample_x   + channel_x  *stride_channel_x   + row*stride_row;
+    y   += sample_y  *stride_sample_y   + channel_y  *stride_channel_y;
+    dst += sample_dst*stride_sample_dst + channel_dst*stride_channel_dst;
+    
+    const float2 * y2 = (const float2 *) y;
+
+    extern __shared__ char data_mmv[]; // allocated in GPU shared memory: warp_size*sizeof(float)
+    float * buf_iw = (float *) data_mmv;
+
+    if (block_size > warp_size) {
+        if (tid < warp_size) {
+            buf_iw[tid] = 0.0f;
+        }
+        __syncthreads();
+    }
+
+    float sumf = 0.0f;
+
+    for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) {
+        int offset0 = col2 / (MXFP4/2);
+        int i = col2 % (MXFP4/2);
+        const block_mxfp4 *x2 = x+offset0;
+
+        union {
+            uint32_t as_bits;
+            float as_value;
+        } scale;
+        scale.as_bits = (((uint32_t)x2->d) << 23);
+        uint16_t em0 = x2->qs[i] & 0x07;
+        uint16_t em1 = x2->qs[i] & 0x70;
+        // float16 values
+        f16_t x0;
+        f16_t x1;
+        x0.u16 = (em0 << (dst_m_bits - 1)) | ((x2->qs[i] & 0x08) << 12);
+        x1.u16 = (em1 << (dst_m_bits - 5)) | ((x2->qs[i] & 0x80) << 8);
+
+        // Three cases:
+        // x is normal and non-zero: Correct bias
+        if ((em0 & 0x06) != 0) {
+            x0.u16 = x0.u16 + ((dst_bias - 1) << dst_m_bits);
+        }
+        if ((em1 & 0x60) != 0) {
+            x1.u16 = x1.u16 + ((dst_bias - 1) << dst_m_bits);
+        }
+        // x is subnormal (x == 0bs001 where s is the sign): Map to +-0.5 in the dst type
+        if (em0 == 0x01) {
+            x0.u16 = dst_0p5 | (x0.u16 & 0x8000);
+        }
+        if (em1 == 0x10) {
+            x1.u16 = dst_0p5 | (x1.u16 & 0x8000);
+        }
+        // x is zero, do nothing
+
+        if (isnan(scale.as_value)) {
+            sumf = scale.as_value;
+            break;
+        }
+
+        const float2 tmpx = {x0.f16, x1.f16};
+        const float2 tmpy = y2[col2];
+        sumf += tmpx.x*tmpy.x*scale.as_value;
+        sumf += tmpx.y*tmpy.y*scale.as_value;
+    }
+
+    sumf = warp_reduce_sum<warp_size>(sumf);
+
+    if (block_size > warp_size) {
+        buf_iw[tid/warp_size] = sumf;
+        __syncthreads();
+        if (tid >= warp_size) {
+            return;
+        }
+        sumf = buf_iw[tid];
+        sumf = warp_reduce_sum<warp_size>(sumf);
+    }
+
+    if (tid != 0) {
+        return;
+    }
+
+    dst[row] = sumf;
+}
+
+template <typename type_acc>
+static void launch_mul_mat_vec_cuda_mxfp4(
+        const block_mxfp4 * x, const float * y, const int32_t * ids, float * dst,
+        const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
+        const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
+        const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
+        cudaStream_t stream) {
+    GGML_ASSERT(ncols      % 2 == 0);
+    // GGML_ASSERT(stride_row % 2 == 0); // TODO 
+    GGML_ASSERT(ids || nchannels_dst % nchannels_x == 0);
+    GGML_ASSERT(       nsamples_dst  % nsamples_x  == 0);
+    const int64_t channel_ratio = nchannels_dst / nchannels_x;
+    const int64_t sample_ratio  = nsamples_dst  / nsamples_x;
+    int device;
+    int warp_size;
+
+    CUDA_CHECK(cudaGetDevice(&device));
+    warp_size = ggml_cuda_info().devices[device].warp_size;
+
+    int64_t block_size_best = warp_size;
+    int64_t niter_best      = (ncols + 2*warp_size - 1) / (2*warp_size);
+    int64_t max_block_size  = 256;
+    if(ggml_cuda_info().devices[device].cc > GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_info().devices[device].cc < GGML_CUDA_CC_RDNA1) {
+        max_block_size = 128;
+    }
+    for (int64_t block_size = 2*warp_size; block_size <= max_block_size; block_size += warp_size) {
+        const int64_t niter = (ncols + 2*block_size - 1) / (2*block_size);
+        if (niter < niter_best) {
+            niter_best      = niter;
+            block_size_best = block_size;
+        }
+    }
+
+    const int smem = warp_size*sizeof(float);
+    const dim3 block_nums(nrows, nchannels_dst, nsamples_dst);
+    const dim3 block_dims(block_size_best, 1, 1);
+
+    switch (block_size_best) {
+        case   32: {
+            mul_mat_vec_mxfp4<type_acc,  32><<<block_nums, block_dims, smem, stream>>>
+                (x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
+                 stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
+        } break;
+        case   64: {
+            mul_mat_vec_mxfp4<type_acc,  64><<<block_nums, block_dims, smem, stream>>>
+                (x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
+                 stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
+        } break;
+        case   96: {
+            mul_mat_vec_mxfp4<type_acc,  96><<<block_nums, block_dims, smem, stream>>>
+                (x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
+                 stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
+        } break;
+        case  128: {
+            mul_mat_vec_mxfp4<type_acc, 128><<<block_nums, block_dims, smem, stream>>>
+                (x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
+                 stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
+        } break;
+        case  160: {
+            mul_mat_vec_mxfp4<type_acc, 160><<<block_nums, block_dims, smem, stream>>>
+                (x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
+                 stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
+        } break;
+        case  192: {
+            mul_mat_vec_mxfp4<type_acc, 192><<<block_nums, block_dims, smem, stream>>>
+                (x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
+                 stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
+        } break;
+        case  224: {
+            mul_mat_vec_mxfp4<type_acc, 224><<<block_nums, block_dims, smem, stream>>>
+                (x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
+                 stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
+        } break;
+        case  256: {
+            mul_mat_vec_mxfp4<type_acc, 256><<<block_nums, block_dims, smem, stream>>>
+                (x, y, ids, dst, ncols/2, nchannels_y, stride_row, channel_ratio, stride_channel_x, stride_channel_y,
+                 stride_channel_dst, sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
+        } break;
+        default: {
+            GGML_ABORT("fatal error");
+        } break;
+    }
+}
+
+static void mul_mat_vec_cuda_mxfp4(
+        const block_mxfp4 * x, const float * y, const int32_t * ids, float * dst,
+        const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
+        const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
+        const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
+        enum ggml_prec prec, cudaStream_t stream) {
+    launch_mul_mat_vec_cuda_mxfp4<float>
+        (x, y, ids, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
+         stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
+}
+
+void ggml_cuda_mul_mat_vec_mxfp4(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
+    GGML_ASSERT(        src1->type == GGML_TYPE_F32);
+    GGML_ASSERT(!ids ||  ids->type == GGML_TYPE_I32);
+    GGML_ASSERT(         dst->type == GGML_TYPE_F32);
+
+    GGML_TENSOR_BINARY_OP_LOCALS;
+
+    const size_t ts_src0 = ggml_type_size(src0->type);
+    const size_t ts_src1 = ggml_type_size(src1->type);
+    const size_t ts_dst  = ggml_type_size(dst->type);
+
+    GGML_ASSERT(!ids || ne12 == 1); // Implementation is only correct for  batch size 1.
+    GGML_ASSERT(ne13 == ne3);
+
+    // GGML_ASSERT(        nb00       == ts_src0); // TODO adjust for block sizing logic
+    GGML_ASSERT(        nb10       == ts_src1);
+    GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type));
+    GGML_ASSERT(        nb0        == ts_dst);
+
+    const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
+    const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32;
+
+    const float   * src1_d =       (const float   *) src1->data;
+    const int32_t *  ids_d = ids ? (const int32_t *)  ids->data : nullptr;
+    float         *  dst_d =       (float         *)  dst->data;
+
+    const int64_t stride_row = src0->nb[1] / ts_src0;
+    const int64_t s11 = src1->nb[1] / ts_src1;
+    const int64_t s1  =  dst->nb[1] / ts_dst;
+    const int64_t stride_channel_x = src0->nb[2] / ts_src0;
+    const int64_t s12 = src1->nb[2] / ts_src1;
+    const int64_t s2  =  dst->nb[2] / ts_dst;
+    const int64_t stride_sample_x = src0->nb[3] / ts_src0;
+    const int64_t stride_sample_y = src1->nb[3] / ts_src1;
+    const int64_t stride_sample_dst  =  dst->nb[3] / ts_dst;
+    const int64_t nsamples_dst = ne3;
+    const int64_t nsamples_x = ne03;
+    const int64_t nchannels_x = ne02;
+    const int64_t nrows = ne01;
+    const int64_t ncols = ne00;
+
+    // For MUL_MAT_ID the memory layout is different than for MUL_MAT:
+    const int64_t ncols_dst          = ids ? ne2  : ne1;
+    const int64_t nchannels_y        = ids ? ne11 : ne12;
+    const int64_t nchannels_dst      = ids ? ne1  : ne2;
+    const int64_t stride_channel_dst = ids ? s1   : s2;
+    const int64_t stride_channel_y   = ids ? s11  : s12;
+
+    GGML_ASSERT(ncols_dst == 1);
+
+    const block_mxfp4 * src0_d = (const block_mxfp4 *) src0->data;
+    mul_mat_vec_cuda_mxfp4(src0_d, src1_d, ids_d, dst_d, ncols, nrows, stride_row,
+        nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
+        nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, ctx.stream());
+}
+
+void ggml_cuda_op_mul_mat_vec_mxfp4(
+    ggml_backend_cuda_context & ctx,
+    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+    const int64_t src1_padded_row_size, cudaStream_t stream) {
+
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+    GGML_ASSERT(dst->type  == GGML_TYPE_F32);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t row_diff = row_high - row_low;
+
+    GGML_ASSERT(src1_ncols == 1);
+
+    const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
+    const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32;
+
+    // ggml_cuda_op provides single, contiguous matrices
+    const int64_t stride_row         = ne00 / MXFP4; 
+    const int64_t nchannels_x        = 1;
+    const int64_t nchannels_y        = 1;
+    const int64_t nchannels_dst      = 1;
+    const int64_t stride_channel_x   = 0;
+    const int64_t stride_channel_y   = 0;
+    const int64_t stride_channel_dst = 0;
+    const int64_t nsamples_x         = 1;
+    const int64_t nsamples_dst       = 1;
+    const int64_t stride_sample_x    = 0;
+    const int64_t stride_sample_y    = 0;
+    const int64_t stride_sample_dst  = 0;
+
+    const block_mxfp4 * src0_d = (const block_mxfp4 *) src0_dd_i;
+    mul_mat_vec_cuda_mxfp4(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, stride_row,
+        nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
+        nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
+
+    GGML_UNUSED(ctx);
+    GGML_UNUSED(src1);
+    GGML_UNUSED(dst);
+    GGML_UNUSED(src1_ddq_i);
+    GGML_UNUSED(src1_ncols);
+    GGML_UNUSED(src1_padded_row_size);
+}
diff --git a/ggml/src/ggml-cuda/mmvmxfp4.cuh b/ggml/src/ggml-cuda/mmvmxfp4.cuh
new file mode 100644
index 00000000..a08fc780
--- /dev/null
+++ b/ggml/src/ggml-cuda/mmvmxfp4.cuh
@@ -0,0 +1,9 @@
+#include "common.cuh"
+
+void ggml_cuda_mul_mat_vec_mxfp4(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
+
+void ggml_cuda_op_mul_mat_vec_mxfp4(
+    ggml_backend_cuda_context & ctx,
+    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+    const int64_t src1_padded_row_size, cudaStream_t stream);
diff --git a/ggml/src/ggml-metal/ggml-metal-impl.h b/ggml/src/ggml-metal/ggml-metal-impl.h
index 17eab976..938386ba 100644
--- a/ggml/src/ggml-metal/ggml-metal-impl.h
+++ b/ggml/src/ggml-metal/ggml-metal-impl.h
@@ -65,6 +65,9 @@
 #define N_R0_IQ4_XS 2
 #define N_SG_IQ4_XS 2
 
+#define N_R0_MXFP4 4
+#define N_SG_MXFP4 2
+
 // kernel argument structs
 //
 // - element counters (e.g. ne00) typically use int32_t to reduce register usage
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index ab46f6e3..d8e05a21 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -40,6 +40,7 @@ static const NSInteger MTLGPUFamilyMetal3_GGML = 5001;
 static struct ggml_backend_reg    g_ggml_backend_metal_reg;
 static struct ggml_backend_device g_ggml_backend_metal_device;
 
+
 // information about a Metal device
 // note: assumes single GPU device - the default one
 // TODO: support multiple GPU devices
@@ -209,6 +210,7 @@ enum ggml_metal_kernel_type {
     GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32,
+    GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2,
     GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_3,
     GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_4,
@@ -288,6 +290,7 @@ enum ggml_metal_kernel_type {
     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32,
+    GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32,
@@ -310,6 +313,7 @@ enum ggml_metal_kernel_type {
     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,
+    GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16,
     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP1_F32,
     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16,
@@ -334,6 +338,7 @@ enum ggml_metal_kernel_type {
     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16,
     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16,
     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16,
+    GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16,
     GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32,
     GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16,
     GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32,
@@ -934,7 +939,7 @@ static id<MTLLibrary> ggml_metal_load_library(id<MTLDevice> device, bool use_bfl
 
             MTLCompileOptions * options = [MTLCompileOptions new];
             options.preprocessorMacros = prep;
-
+            
             //[options setFastMathEnabled:false];
 
             metal_library = [device newLibraryWithSource:src options:options error:&error];
@@ -1157,6 +1162,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32,                 mul_mv_q5_0_f32,                 has_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32,                 mul_mv_q5_1_f32,                 has_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32,                 mul_mv_q8_0_f32,                 has_simdgroup_reduction);
+        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32,                mul_mv_mxfp4_f32,                has_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2,         mul_mv_ext_f16_f32_r1_2,         has_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_3,         mul_mv_ext_f16_f32_r1_3,         has_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_4,         mul_mv_ext_f16_f32_r1_4,         has_simdgroup_reduction);
@@ -1236,6 +1242,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32,             mul_mv_id_iq1_m_f32,             has_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32,            mul_mv_id_iq4_nl_f32,            has_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32,            mul_mv_id_iq4_xs_f32,            has_simdgroup_reduction);
+        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32,             mul_mv_id_mxfp4_f32,             has_simdgroup_reduction);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,                  mul_mm_f32_f32,                  has_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,                  mul_mm_f16_f32,                  has_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32,                 mul_mm_bf16_f32,                 has_simdgroup_mm && use_bfloat);
@@ -1258,6 +1265,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32,                mul_mm_iq1_m_f32,                has_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,               mul_mm_iq4_nl_f32,               has_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,               mul_mm_iq4_xs_f32,               has_simdgroup_mm);
+        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32,                mul_mm_mxfp4_f32,                has_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16,              mul_mm_id_map0_f16,              has_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP1_F32,              mul_mm_id_map1_f32,              has_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16,               mul_mm_id_f32_f16,               has_simdgroup_mm);
@@ -1282,6 +1290,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16,             mul_mm_id_iq1_m_f16,             has_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16,            mul_mm_id_iq4_nl_f16,            has_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16,            mul_mm_id_iq4_xs_f16,            has_simdgroup_mm);
+        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16,             mul_mm_id_mxfp4_f16,             has_simdgroup_mm);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32,                   rope_norm_f32,                   true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16,                   rope_norm_f16,                   true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32,                  rope_multi_f32,                  true);
@@ -3007,6 +3016,7 @@ static bool ggml_metal_encode_node(
                         case GGML_TYPE_IQ1_M:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32  ].pipeline; break;
                         case GGML_TYPE_IQ4_NL:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break;
                         case GGML_TYPE_IQ4_XS:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break;
+                        case GGML_TYPE_MXFP4:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32  ].pipeline; break;
                         default: GGML_ABORT("MUL MAT-MAT not implemented");
                     }
 
@@ -3212,6 +3222,12 @@ static bool ggml_metal_encode_node(
                                 smem = 32*sizeof(float);
                                 pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32].pipeline;
                             } break;
+                        case GGML_TYPE_MXFP4:
+                            {
+                                nsg = N_SG_MXFP4;
+                                nr0 = N_R0_MXFP4;
+                                pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32].pipeline;
+                            } break;
                         default:
                             {
                                 GGML_LOG_ERROR("Asserting on type %d\n", (int)src0t);
@@ -3396,6 +3412,7 @@ static bool ggml_metal_encode_node(
                             case GGML_TYPE_IQ1_M:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16  ].pipeline; break;
                             case GGML_TYPE_IQ4_NL:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16 ].pipeline; break;
                             case GGML_TYPE_IQ4_XS:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16 ].pipeline; break;
+                            case GGML_TYPE_MXFP4:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16  ].pipeline; break;
                             default: GGML_ABORT("MUL_MAT_ID not implemented");
                         }
 
@@ -3607,6 +3624,12 @@ static bool ggml_metal_encode_node(
                                 smem = 32*sizeof(float);
                                 pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline;
                             } break;
+                        case GGML_TYPE_MXFP4:
+                            {
+                                nsg = N_SG_MXFP4;
+                                nr0 = N_R0_MXFP4;
+                                pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32].pipeline;
+                            } break;
                         default:
                             {
                                 GGML_LOG_ERROR("Asserting on type %d\n", (int)src2t);
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
index 08e8d807..69fa17de 100644
--- a/ggml/src/ggml-metal/ggml-metal.metal
+++ b/ggml/src/ggml-metal/ggml-metal.metal
@@ -1902,16 +1902,16 @@ void mul_vec_q_n_f32_impl(
         device const char * src1,
         device       char * dst,
         threadgroup  char * shmem,
-        uint3  tgpig,
-        ushort tiisg,
-        ushort sgitg) {
-    const int nb = args.ne00/QK4_0;
+        uint3  tgpig, // Threadgroup Position in Grid
+        ushort tiisg, // Thread Index in SIMD Group
+        ushort sgitg) { // SIMD Group Index in ThreadGroup
+    const int nb = args.ne00/QK4_0; // src0->ne[0] / 32
 
     const int r0 = tgpig.x;
     const int r1 = tgpig.y;
     const int im = tgpig.z;
 
-    const int first_row = (r0 * nsg + sgitg) * nr0;
+    const int first_row = (r0 * nsg + sgitg) * nr0; // nsg=2 nr0=4
 
     const uint i12 = im%args.ne12;
     const uint i13 = im/args.ne12;
@@ -6744,6 +6744,49 @@ kernel void kernel_mul_mm_id(
     }
 }
 
+template <typename type4x4>
+void dequantize_mxfp4(device const block_mxfp4 * xb, short il, thread type4x4 & reg) {
+    float4x4 reg_f;
+    const ushort dst_bias = 15;
+    const ushort dst_0p5 = 0x3800;
+    const ushort dst_m_bits = 10;
+    const half scale = (half)(as_type<float>(((uint32_t)xb->d) << 23));
+    // il:0 first 16, il:1 last 16
+    for (int i = 0; i < 8; i++) {
+        ushort em0 = xb->qs[il*8 + i] & 0x07;
+        ushort em1 = xb->qs[il*8 + i] & 0x70;
+        // float16 values
+        ushort x0 = (em0 << (dst_m_bits - 1)) | ((xb->qs[il*8 + i] & 0x08) << 12);
+        ushort x1 = (em1 << (dst_m_bits - 5)) | ((xb->qs[il*8 + i] & 0x80) << 8);
+
+        // Three cases:
+        // x is normal and non-zero: Correct bias
+        if ((em0 & 0x06) != 0) {
+            x0 = x0 + ((dst_bias - 1) << dst_m_bits);
+        }
+        if ((em1 & 0x60) != 0) {
+            x1 = x1 + ((dst_bias - 1) << dst_m_bits);
+        }
+        // x is subnormal (x == 0bs001 where s is the sign): Map to +-0.5 in the dst type
+        if (em0 == 0x01) {
+            x0 = dst_0p5 | (x0 & 0x8000);
+        }
+        if (em1 == 0x10) {
+            x1 = dst_0p5 | (x1 & 0x8000);
+        }
+        // x is zero, do nothing
+
+        if (isnan(scale)) {
+            reg_f[i/2][2*(i%2) + 0] = scale;
+            reg_f[i/2][2*(i%2) + 1] = scale;
+        } else {
+            reg_f[i/2][2*(i%2) + 0] = scale * as_type<half>(x0);
+            reg_f[i/2][2*(i%2) + 1] = scale * as_type<half>(x1);
+        }
+    }
+    reg = (type4x4) reg_f;
+}
+
 #define QK_NL 16
 
 //
@@ -6811,6 +6854,8 @@ template [[host_name("kernel_mul_mm_iq1_m_f32")]]   kernel mul_mm_t kernel_mul_m
 template [[host_name("kernel_mul_mm_iq4_nl_f32")]]  kernel mul_mm_t kernel_mul_mm<half,   half4x4,   simdgroup_half8x8,   block_iq4_nl,  2,     dequantize_iq4_nl>;
 template [[host_name("kernel_mul_mm_iq4_xs_f32")]]  kernel mul_mm_t kernel_mul_mm<half,   half4x4,   simdgroup_half8x8,   block_iq4_xs,  QK_NL, dequantize_iq4_xs>;
 
+template [[host_name("kernel_mul_mm_mxfp4_f32")]]   kernel mul_mm_t kernel_mul_mm<half,   half4x4,   simdgroup_half8x8,   block_mxfp4,   2,     dequantize_mxfp4>;
+
 //
 // indirect matrix-matrix multiplication
 //
@@ -6842,6 +6887,8 @@ template [[host_name("kernel_mul_mm_id_iq1_m_f16")]]   kernel mul_mm_id kernel_m
 template [[host_name("kernel_mul_mm_id_iq4_nl_f16")]]  kernel mul_mm_id kernel_mul_mm_id<half,   half4x4,   simdgroup_half8x8,   block_iq4_nl,  2,     dequantize_iq4_nl>;
 template [[host_name("kernel_mul_mm_id_iq4_xs_f16")]]  kernel mul_mm_id kernel_mul_mm_id<half,   half4x4,   simdgroup_half8x8,   block_iq4_xs,  QK_NL, dequantize_iq4_xs>;
 
+template [[host_name("kernel_mul_mm_id_mxfp4_f16")]]   kernel mul_mm_id kernel_mul_mm_id<half,   half4x4,   simdgroup_half8x8,   block_mxfp4,    2,    dequantize_mxfp4>;
+
 
 //
 // matrix-vector multiplication
@@ -6958,6 +7005,120 @@ kernel void kernel_mul_mv_id(
         sgitg);
 }
 
+// MXFP32 implementation derived from mul_vec_q_n_f32_impl and block_q_n_dot_y
+void mul_mv_mxfp4_f32_impl(
+        ggml_metal_kargs_mul_mv args,
+        device const char * src0,
+        device const char * src1,
+        device       char * dst,
+        threadgroup  char * shmem,
+        uint3  tgpig,
+        ushort tiisg,
+        ushort sgitg) {
+    const ushort dst_bias = 15;
+    const ushort dst_0p5 = 0x3800;
+    const ushort dst_m_bits = 10;
+    const int nr0 = N_R0_MXFP4;
+    const int nsg = N_SG_MXFP4;
+    const int nw = N_SIMDWIDTH;
+    const int nb = args.ne00/MXFP4;
+
+    const int r0 = tgpig.x;
+    const int r1 = tgpig.y;
+    const int im = tgpig.z;
+
+    const int first_row = (r0 * nsg + sgitg) * nr0;
+
+    const uint i12 = im%args.ne12;
+    const uint i13 = im/args.ne12;
+
+    const uint64_t offset1 =        r1*args.nb11 + (i12        )*args.nb12 + (i13        )*args.nb13;
+
+    device const float       * y = (device const float       *) (src1 + offset1);
+
+    // pointers to src0 rows
+    device const block_mxfp4 * ax[nr0];
+    for (int row = 0; row < nr0; ++row) {
+        const uint64_t offset0 = (first_row + row)*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
+
+        ax[row] = (device const block_mxfp4 *) ((device char *) src0 + offset0);
+    }
+
+    float yl[16]; // src1 vector cache
+    float sumf[nr0] = {0.f};
+
+    const short ix = (tiisg/2);
+    const short il = (tiisg%2)*16;
+
+    device const float * yb = y + ix*MXFP4 + il;
+
+    // each thread in a SIMD group deals with half a block.
+    for (int ib = ix; ib < nb; ib += nw/2) {
+
+#pragma unroll
+        for (short row = 0; row < nr0; row++) {
+            // Processes 16 items
+            device const block_mxfp4 * qb_curr = ax[row] + ib;
+            float d = as_type<float>(((uint32_t)(ax[row] + ib)->d) << 23);
+            // il = 0 or 16
+            device const uint8_t *qs = ((device const uint8_t *) qb_curr + 1 + il/2);
+            for (int i = 0; i < 8; ++i) {
+                ushort em0 = qs[i] & 0x07;
+                ushort em1 = qs[i] & 0x70;
+                ushort x0 = (em0 << (dst_m_bits - 1)) | ((qs[i] & 0x08) << 12);
+                ushort x1 = (em1 << (dst_m_bits - 5)) | ((qs[i] & 0x80) << 8);
+                // Three cases:
+                // x is normal and non-zero: Correct bias
+                if ((em0 & 0x06) != 0) {
+                    x0 = x0 + ((dst_bias - 1) << dst_m_bits);
+                }
+                if ((em1 & 0x60) != 0) {
+                    x1 = x1 + ((dst_bias - 1) << dst_m_bits);
+                }
+                // x is subnormal (x == 0bs001 where s is the sign): Map to +-0.5 in the dst type
+                if (em0 == 0x01) {
+                    x0 = dst_0p5 | (x0 & 0x8000);
+                }
+                if (em1 == 0x10) {
+                    x1 = dst_0p5 | (x1 & 0x8000);
+                }
+                // x is zero, do nothing
+                if (!isnan(d)) {
+                    sumf[row] += yb[i*2] * as_type<half>(x0) * d
+                        + yb[i*2+1] * as_type<half>(x1) * d;
+                } else {
+                    sumf[row] = d;
+                }
+            }
+        }
+
+        yb += MXFP4 * 16;
+    }
+
+    device float * dst_f32 = (device float *) dst + im*args.ne0*args.ne1 + r1*args.ne0;
+
+    for (int row = 0; row < nr0; ++row) {
+        const float tot = simd_sum(sumf[row]);
+
+        if (tiisg == 0 && first_row + row < args.ne01) {
+            dst_f32[first_row + row] = tot;
+        }
+    }
+}
+
+[[host_name("kernel_mul_mv_mxfp4_f32")]]
+kernel void kernel_mul_mv_mxfp4_f32(
+        constant ggml_metal_kargs_mul_mv & args,
+        device const char * src0,
+        device const char * src1,
+        device       char * dst,
+        threadgroup  char * shmem [[threadgroup(0)]],
+        uint3  tgpig[[threadgroup_position_in_grid]],
+        ushort tiisg[[thread_index_in_simdgroup]],
+        ushort sgitg[[simdgroup_index_in_threadgroup]]) {
+    mul_mv_mxfp4_f32_impl(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
+}
+
 typedef decltype(kernel_mul_mv_id<mmv_fn<kernel_mul_mv_impl<float, float4, float, float4>>>) kernel_mul_mv_id_t;
 
 template [[host_name("kernel_mul_mv_id_f32_f32")]]     kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_impl<float, float4, float, float4>>>;
@@ -6987,6 +7148,8 @@ template [[host_name("kernel_mul_mv_id_iq2_s_f32")]]   kernel kernel_mul_mv_id_t
 template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]]  kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_nl_f32_impl <N_R0_IQ4_NL,  N_SG_IQ4_NL,  N_SIMDWIDTH>>>;
 template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]]  kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl <N_R0_IQ4_XS,  N_SG_IQ4_XS,  N_SIMDWIDTH>>>;
 
+template [[host_name("kernel_mul_mv_id_mxfp4_f32")]]    kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_mv_mxfp4_f32_impl>>;
+
 kernel void kernel_pool_2d_max_f32(
         device  const float * src0,
         device        float * dst,
diff --git a/ggml/src/ggml-quants.c b/ggml/src/ggml-quants.c
index 84ec6dfe..17c308aa 100644
--- a/ggml/src/ggml-quants.c
+++ b/ggml/src/ggml-quants.c
@@ -4925,6 +4925,144 @@ void quantize_row_iq2_s_ref(const float * GGML_RESTRICT x, block_iq2_s * GGML_RE
     quantize_iq2_s(x, y, 1, k, NULL);
 }
 
+// =============================== mxfp4 (de)-quantization
+
+void quantize_row_mxfp4_ref(const float * GGML_RESTRICT x, block_mxfp4 * GGML_RESTRICT y, int64_t k) {
+    static const int qk = MXFP4;
+    static const uint32_t E8_BIAS = 127;
+    static const uint32_t E2_BIAS = 1;
+
+    assert(k % qk == 0);
+
+    const int nb = k / qk;
+
+    for (int i = 0; i < nb; i++) {
+        float amax = 0.0f; // absolute max
+
+        for (int j = 0; j < qk; j++) {
+            const float v = x[i*qk + j];
+            if (amax < fabsf(v)) {
+                amax = fabsf(v);
+            }
+        }
+
+        const float dequant_scale  = amax / 6.0f;
+        uint32_t dequant_scale_exponent = 0;
+        memcpy(&dequant_scale_exponent, &dequant_scale, sizeof(dequant_scale_exponent));
+
+        // Rounding up
+        dequant_scale_exponent = (dequant_scale_exponent + 0x007FFFFF) & 0x7F800000;
+        // Rounding down
+        // dequant_scale_exponent = dequant_scale_exponent & 0x7F800000;
+
+        float dequant_scale_rounded = 0.0f;
+        memcpy(&dequant_scale_rounded, &dequant_scale_exponent, sizeof(dequant_scale_rounded));
+        float quant_scale = 0.0f;
+        if (dequant_scale_rounded != 0.0f) {
+            quant_scale = 1.0f / dequant_scale_rounded;
+        }
+
+        y[i].d = (uint8_t)(dequant_scale_exponent >> 23);
+
+        for (int j = 0; j < qk/2; ++j) {
+            const float x0 = x[i*qk + j*2]*quant_scale;
+            const float x1 = x[i*qk + j*2+1]*quant_scale;
+
+            uint32_t xi0 = 0;
+            uint32_t xi1 = 0;
+            memcpy(&xi0, &x0, sizeof(xi0));
+            memcpy(&xi1, &x1, sizeof(xi1));
+
+            uint32_t s0 = xi0 & 0x80000000;
+            uint32_t s1 = xi1 & 0x80000000;
+            uint32_t e0 = (xi0 >> 23) & 0xFF;
+            uint32_t e1 = (xi1 >> 23) & 0xFF;
+            uint32_t m0 = (xi0 & 0x7FFFFF);
+            uint32_t m1 = (xi1 & 0x7FFFFF);
+
+            // 0.25 <= x < 0.75 maps to 0.5, a denormal number
+            // Move implicit bit 1 at the beginning to mantissa for denormals
+            // adjusted_exponents
+            uint32_t ae0 = E8_BIAS - (e0 + 1);
+            uint32_t ae1 = E8_BIAS - (e1 + 1);
+            if (e0 < E8_BIAS) {
+                m0 = (0x400000 | (m0 >> 1)) >> ae0;
+            }
+            if (e1 < E8_BIAS) {
+                m1 = (0x400000 | (m1 >> 1)) >> ae1;
+            }
+
+            // For normal numbers, we change the bias from 127 to 1, and for subnormals, we keep exponent as 0.
+            e0 = MAX(e0, E8_BIAS - E2_BIAS) - (E8_BIAS - E2_BIAS);
+            e1 = MAX(e1, E8_BIAS - E2_BIAS) - (E8_BIAS - E2_BIAS);
+
+            // Combine sign, exponent, and mantissa, while saturating
+            // rounding nearest with tie breaking up by adding +1 to one bit right of the LSB, then shift right
+            uint32_t tmp0 = MIN((((e0 << 2) | (m0 >> 21)) + 1) >> 1, 0x7);
+            uint32_t tmp1 = MIN((((e1 << 2) | (m1 >> 21)) + 1) >> 1, 0x7);
+            uint8_t v0 = (uint8_t)((s0 >> 28) | tmp0);
+            uint8_t v1 = (uint8_t)((s1 >> 28) | tmp1);           
+            y[i].qs[j]  = v0;
+            y[i].qs[j] |= v1 << 4;
+        }
+    }
+}
+
+void dequantize_row_mxfp4(const block_mxfp4 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k) {
+    assert(k % MXFP4 == 0);
+
+    const int nb = k / MXFP4;
+    const uint16_t dst_bias = 15;
+    const uint16_t dst_0p5 = 0x3800;
+    const uint16_t dst_m_bits = 10;
+
+    for (int i = 0; i < nb; i++) {
+        union {
+            uint32_t as_bits;
+            float as_value;
+        } scale;
+        scale.as_bits = (((uint32_t)x[i].d) << 23);
+        for (int j = 0; j < MXFP4/2; ++j) {
+            uint16_t em0 = x[i].qs[j] & 0x07;
+            uint16_t em1 = x[i].qs[j] & 0x70;
+            // float16 values
+            uint16_t x0 = (em0 << (dst_m_bits - 1)) | ((x[i].qs[j] & 0x08) << 12);
+            uint16_t x1 = (em1 << (dst_m_bits - 5)) | ((x[i].qs[j] & 0x80) << 8);
+
+            // Three cases:
+            // x is normal and non-zero: Correct bias
+            if ((em0 & 0x06) != 0) {
+                x0 = x0 + ((dst_bias - 1) << dst_m_bits);
+            }
+            if ((em1 & 0x60) != 0) {
+                x1 = x1 + ((dst_bias - 1) << dst_m_bits);
+            }
+            // x is subnormal (x == 0bs001 where s is the sign): Map to +-0.5 in the dst type
+            if (em0 == 0x01) {
+                x0 = dst_0p5 | (x0 & 0x8000);
+            }
+            if (em1 == 0x10) {
+                x1 = dst_0p5 | (x1 & 0x8000);
+            }
+            // x is zero, do nothing
+
+            if (isnan(scale.as_value)) {
+                y[i*MXFP4 + j*2] = scale.as_value;
+                y[i*MXFP4 + j*2+1] = scale.as_value;
+            } else {
+                y[i*MXFP4 + j*2] = GGML_FP16_TO_FP32(x0)*scale.as_value;
+                y[i*MXFP4 + j*2+1] = GGML_FP16_TO_FP32(x1)*scale.as_value;
+            }
+        }
+    }
+}
+
+
+size_t quantize_mxfp4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
+    quantize_row_mxfp4_ref(src, dst, (int64_t)nrow*n_per_row);
+    return nrow * ggml_row_size(GGML_TYPE_MXFP4, n_per_row);
+}
+
 // =============================== data validation
 
 static bool validate_float(float f, size_t i) {
@@ -5214,7 +5352,9 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte
             {
                 VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
             } break;
-
+        case GGML_TYPE_MXFP4:
+            // TODO - anything to validate?
+            break;
         case GGML_TYPE_I8:
         case GGML_TYPE_I16:
         case GGML_TYPE_I32:
diff --git a/ggml/src/ggml-quants.h b/ggml/src/ggml-quants.h
index d09173e1..2fc40f75 100644
--- a/ggml/src/ggml-quants.h
+++ b/ggml/src/ggml-quants.h
@@ -37,6 +37,8 @@ GGML_API void quantize_row_iq4_xs_ref (const float * GGML_RESTRICT x, block_iq4_
 GGML_API void quantize_row_iq3_s_ref  (const float * GGML_RESTRICT x, block_iq3_s   * GGML_RESTRICT y, int64_t k);
 GGML_API void quantize_row_iq2_s_ref  (const float * GGML_RESTRICT x, block_iq2_s   * GGML_RESTRICT y, int64_t k);
 
+GGML_API void quantize_row_mxfp4_ref(const float * GGML_RESTRICT x, block_mxfp4 * GGML_RESTRICT y, int64_t k);
+
 // Dequantization
 GGML_API void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
 GGML_API void dequantize_row_q4_1(const block_q4_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
@@ -65,6 +67,8 @@ GGML_API void dequantize_row_iq4_nl (const block_iq4_nl  * GGML_RESTRICT x, floa
 GGML_API void dequantize_row_iq4_xs (const block_iq4_xs  * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
 GGML_API void dequantize_row_iq3_s  (const block_iq3_s   * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
 
+GGML_API void dequantize_row_mxfp4(const block_mxfp4 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
+
 // Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
 GGML_API size_t quantize_iq2_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
 GGML_API size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
@@ -90,6 +94,8 @@ GGML_API size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTR
 GGML_API size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
 GGML_API size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
 
+GGML_API size_t quantize_mxfp4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
+
 GGML_API void iq2xs_init_impl(enum ggml_type type);
 GGML_API void iq2xs_free_impl(enum ggml_type type);
 GGML_API void iq3xs_init_impl(int grid_size);
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index 8a654624..0f3c9834 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -589,11 +589,13 @@ static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = {
         .to_float                 = (ggml_to_float_t) dequantize_row_q4_1,
         .from_float_ref           = (ggml_from_float_t) quantize_row_q4_1_ref,
     },
-    [4] = { // GGML_TYPE_Q4_2
-        .type_name                = "DEPRECATED",
-        .blck_size                = 0,
-        .type_size                = 0,
-        .is_quantized             = false,
+    [GGML_TYPE_MXFP4] = { // formerly deprecated GGML_TYPE_Q4_2
+        .type_name                = "mxfp4",
+        .blck_size                = MXFP4,
+        .type_size                = sizeof(block_mxfp4),
+        .is_quantized             = true,
+        .to_float                 = (ggml_to_float_t) dequantize_row_mxfp4,
+        .from_float_ref           = (ggml_from_float_t) quantize_row_mxfp4_ref,
     },
     [5] = { // GGML_TYPE_Q4_3
         .type_name                = "DEPRECATED",
@@ -6446,6 +6448,7 @@ size_t ggml_quantize_chunk(
         case GGML_TYPE_IQ1_M:   result = quantize_iq1_m  (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
         case GGML_TYPE_IQ4_NL:  result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
         case GGML_TYPE_IQ4_XS:  result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
+        case GGML_TYPE_MXFP4:   result = quantize_mxfp4  (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
         case GGML_TYPE_F16:
             {
                 size_t elemsize = sizeof(ggml_fp16_t);