model_text.go 6.34 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
package qwen3vl

import (
	"cmp"
	"math"
	"slices"
	"strings"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
Michael Yang's avatar
Michael Yang committed
13
14
	"github.com/ollama/ollama/ml/nn/fast"
	"github.com/ollama/ollama/ml/nn/rope"
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
	"github.com/ollama/ollama/model"
)

type TextOptions struct {
	hiddenSize,
	numHeads,
	numKVHeads,
	keyLength,
	valueLength int

	eps,
	ropeBase,
	ropeScale float32
	mropeSections []int

	numExperts, numExpertsUsed int
	normTopKProb               bool
}

func (o TextOptions) headDim() int {
	return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}

Michael Yang's avatar
Michael Yang committed
38
39
40
41
42
43
func (o TextOptions) applyRotaryPositionalEmbedding(ctx ml.Context, t, p ml.Tensor) ml.Tensor {
	return fast.RoPE(ctx, t, p, o.headDim(), o.ropeBase, 1/float32(math.Sqrt(float64(o.ropeScale))),
		rope.WithMRoPESections(o.mropeSections),
	)
}

44
45
46
47
48
49
50
51
52
type TextAttention struct {
	Query     *nn.Linear  `gguf:"attn_q"`
	QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
	Key       *nn.Linear  `gguf:"attn_k"`
	KeyNorm   *nn.RMSNorm `gguf:"attn_k_norm"`
	Value     *nn.Linear  `gguf:"attn_v"`
	Output    *nn.Linear  `gguf:"attn_output"`
}

Michael Yang's avatar
Michael Yang committed
53
func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
54
55
56
57
58
59
60
61
62
63
64
65
66
	batchSize := hiddenStates.Dim(1)

	query := sa.Query.Forward(ctx, hiddenStates)
	key := sa.Key.Forward(ctx, hiddenStates)
	value := sa.Value.Forward(ctx, hiddenStates)

	query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
	key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
	value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)

	query = sa.QueryNorm.Forward(ctx, query, opts.eps)
	key = sa.KeyNorm.Forward(ctx, key, opts.eps)

Michael Yang's avatar
Michael Yang committed
67
68
	query = opts.applyRotaryPositionalEmbedding(ctx, query, positions)
	key = opts.applyRotaryPositionalEmbedding(ctx, key, positions)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

	attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
	attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
	return sa.Output.Forward(ctx, attention)
}

type TextMLP interface {
	Forward(ml.Context, ml.Tensor, *TextOptions) ml.Tensor
}

type sparse struct {
	Router *nn.Linear      `gguf:"ffn_gate_inp"`
	Gate   *nn.LinearBatch `gguf:"ffn_gate_exps"`
	Up     *nn.LinearBatch `gguf:"ffn_up_exps"`
	Down   *nn.LinearBatch `gguf:"ffn_down_exps"`
}

func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
	hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
	hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
	routerLogits := mlp.Router.Forward(ctx, hiddenStates)

	routingWeights := routerLogits.Softmax(ctx)
	selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
	routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, selectedExperts)
	if opts.normTopKProb {
		routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, hiddenStates.Dim(1))
		routingWeights = routingWeights.Div(ctx, routingWeights.SumRows(ctx))
		routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, hiddenStates.Dim(1))
	}

	hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))

	hiddenStates = mlp.Gate.Forward(ctx, hiddenStates, selectedExperts).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates, selectedExperts))

	experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
	experts = experts.Mul(ctx, routingWeights)

	nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
	for i := 1; i < opts.numExpertsUsed; i++ {
		nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
	}

	return nextStates
}

type dense struct {
	Gate *nn.Linear `gguf:"ffn_gate"`
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
}

func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *TextOptions) ml.Tensor {
	hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
	return mlp.Down.Forward(ctx, hiddenStates)
}

type TextLayer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	*TextAttention

	MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
	TextMLP
}

Michael Yang's avatar
Michael Yang committed
134
func (d *TextLayer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
135
136
	residual := hiddenStates
	hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
Michael Yang's avatar
Michael Yang committed
137
	hiddenStates = d.TextAttention.Forward(ctx, hiddenStates, positions, cache, opts)
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

	if outputs != nil {
		hiddenStates = hiddenStates.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

	hiddenStates = hiddenStates.Add(ctx, residual)

	residual = hiddenStates
	hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = d.TextMLP.Forward(ctx, hiddenStates, opts)
	return hiddenStates.Add(ctx, residual)
}

type TextModel struct {
	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	Layers []TextLayer `gguf:"blk"`

	Options *TextOptions
}

var _ model.Model = (*Model)(nil)

func newTextModel(c fs.Config) *TextModel {
	layers := make([]TextLayer, c.Uint("block_count"))
	for i := range layers {
		if strings.HasSuffix(c.String("general.architecture"), "moe") {
			layers[i].TextMLP = &sparse{}
		} else {
			layers[i].TextMLP = &dense{}
		}
	}

	m := TextModel{
		Layers: layers,
		Options: &TextOptions{
			hiddenSize:     int(c.Uint("embedding_length")),
			numHeads:       int(c.Uint("attention.head_count")),
			numKVHeads:     int(c.Uint("attention.head_count_kv")),
			keyLength:      int(c.Uint("attention.key_length")),
			valueLength:    int(c.Uint("attention.value_length")),
			eps:            c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:       c.Float("rope.freq_base"),
			ropeScale:      c.Float("rope.scaling.factor", 1),
			numExperts:     int(c.Uint("expert_count")),
			numExpertsUsed: int(c.Uint("expert_used_count")),
			normTopKProb:   c.Bool("norm_top_k_prob", true),
			mropeSections: slices.Collect(func(yield func(int) bool) {
				for _, section := range c.Ints("mrope_sections", []int32{24, 20, 20}) {
					if !yield(int(section)) {
						return
					}
				}
			}),
		},
	}

	return &m
}