memory_test.go 4.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
package llm

import (
	"bytes"
	"fmt"
	"os"
	"testing"

	"github.com/stretchr/testify/assert"
	"github.com/stretchr/testify/require"
Michael Yang's avatar
lint  
Michael Yang committed
11
12

	"github.com/ollama/ollama/api"
13
	"github.com/ollama/ollama/discover"
Michael Yang's avatar
Michael Yang committed
14
	"github.com/ollama/ollama/fs/ggml"
15
16
17
)

func TestEstimateGPULayers(t *testing.T) {
Michael Yang's avatar
Michael Yang committed
18
	t.Setenv("OLLAMA_DEBUG", "1")
19
	t.Setenv("OLLAMA_KV_CACHE_TYPE", "") // Ensure default f16
20
	t.Setenv("OLLAMA_CONTEXT_LENGTH", "2048")
Michael Yang's avatar
Michael Yang committed
21

22
23
	modelName := "dummy"
	f, err := os.CreateTemp(t.TempDir(), modelName)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
24
	require.NoError(t, err)
25
26
	defer f.Close()
	inputLayerCount := 5
27

Michael Yang's avatar
Michael Yang committed
28
	tensors := []ggml.Tensor{
29
30
31
32
33
34
		{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "blk.3.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "blk.4.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
35
	}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
36
	assert.Len(t, tensors, inputLayerCount+1)
Michael Yang's avatar
Michael Yang committed
37
	err = ggml.WriteGGUF(f, ggml.KV{
38
39
40
41
42
43
44
45
46
47
48
49
		"general.architecture":          "llama",
		"llama.context_length":          uint32(32),
		"llama.embedding_length":        uint32(4096),
		"llama.block_count":             uint32(inputLayerCount),
		"llama.attention.head_count":    uint32(32),
		"llama.attention.head_count_kv": uint32(32),
		"tokenizer.ggml.tokens":         []string{" "},
		"tokenizer.ggml.scores":         []float32{0},
		"tokenizer.ggml.token_type":     []int32{0},
	}, tensors)
	require.NoError(t, err)

50
51
52
53
	ggml, err := LoadModel(f.Name(), 0)
	if err != nil {
		t.Fatal(err)
	}
54
55

	// Simple CPU scenario
56
	gpus := []discover.GpuInfo{
57
58
59
60
61
62
		{
			Library: "cpu",
		},
	}
	projectors := []string{}
	opts := api.DefaultOptions()
Daniel Hiltgen's avatar
Daniel Hiltgen committed
63
64
65
66
67
	t.Run("cpu", func(t *testing.T) {
		estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
		assert.Equal(t, 0, estimate.Layers)
		assert.Equal(t, uint64(0), estimate.Graph)
	})
68
69
70
71
72
73
74
75

	// derived from the dummy ggml file above
	graphPartialOffload := uint64(202377216)
	graphFullOffload := uint64(171968512)
	layerSize := uint64(33554436)
	projectorSize := uint64(0)
	memoryLayerOutput := uint64(4)

76
	// Dual CUDA scenario with asymmetry
77
	gpuMinimumMemory := uint64(2048)
78
	gpus = []discover.GpuInfo{
79
80
81
82
83
84
85
86
87
88
		{
			Library:       "cuda",
			MinimumMemory: gpuMinimumMemory,
		},
		{
			Library:       "cuda",
			MinimumMemory: gpuMinimumMemory,
		},
	}
	// Nested array: GPU0 layer space, GPU1 layer space, expected gpu0, expected gpu1
Daniel Hiltgen's avatar
Daniel Hiltgen committed
89
90
91
92
	for i, s := range []struct {
		layer0, layer1   uint64
		expect0, expect1 uint64
	}{
93
94
95
96
97
98
99
100
101
		{1, 1, 1, 1},
		{2, 1, 2, 1},
		{2, 2, 2, 2},
		{1, 2, 1, 2},
		{3, 3, 3, 3},
		{4, 4, 3, 3},
		{6, 6, 3, 3},
		{0, 3, 0, 3},
	} {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
		t.Run(fmt.Sprintf("%v", s), func(t *testing.T) {
			gpus[0].FreeMemory = 0
			gpus[1].FreeMemory = 0
			gpus[0].FreeMemory += projectorSize
			if s.layer0 > 0 {
				gpus[0].FreeMemory += memoryLayerOutput
			} else {
				gpus[1].FreeMemory += memoryLayerOutput
			}
			gpus[0].FreeMemory += gpuMinimumMemory + layerSize + s.layer0*layerSize + 1
			gpus[1].FreeMemory += gpuMinimumMemory + layerSize + s.layer1*layerSize + 1
			gpus[0].FreeMemory += max(graphFullOffload, graphPartialOffload)
			gpus[1].FreeMemory += max(graphFullOffload, graphPartialOffload)
			estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
			assert.Equal(t, int(s.expect0+s.expect1), estimate.Layers, "scenario %d: %v", i, s)
			assert.Equal(t, fmt.Sprintf("%d,%d", s.expect0, s.expect1), estimate.TensorSplit, "scenario %d: %v", i, s)
			var layerSums uint64
			for _, b := range estimate.GPUSizes {
				layerSums += b
			}
			if estimate.Layers < inputLayerCount+1 {
				assert.Less(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
				assert.Equal(t, estimate.VRAMSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
			} else {
				assert.Equal(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
				assert.Equal(t, estimate.TotalSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
			}
		})
130
131
	}
}