convert_llama4.go 5.32 KB
Newer Older
Michael Yang's avatar
llama4  
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
package convert

import (
	"slices"
	"strings"

	"github.com/pdevine/tensor"
	"github.com/pdevine/tensor/native"

	"github.com/ollama/ollama/fs/ggml"
)

type llama4Model struct {
	ModelParameters
	TextModel struct {
		llamaModel
		NumExpertsPerToken     uint32 `json:"num_experts_per_tok"`
		NumLocalExperts        uint32 `json:"num_local_experts"`
		InterleaveMOELayerStep uint32 `json:"interleave_moe_layer_step"`
		UseQKNorm              bool   `json:"use_qk_norm"`
		IntermediateSizeMLP    uint32 `json:"intermediate_size_mlp"`
	} `json:"text_config"`
	VisionModel struct {
		NumHiddenLayers   uint32  `json:"num_hidden_layers"`
		HiddenSize        uint32  `json:"hidden_size"`
		IntermediateSize  uint32  `json:"intermediate_size"`
		NumAttentionHeads uint32  `json:"num_attention_heads"`
		ImageSize         uint32  `json:"image_size"`
		PatchSize         uint32  `json:"patch_size"`
		RopeTheta         float32 `json:"rope_theta"`
		NormEpsilon       float32 `json:"norm_eps"`
		PixelShuffleRatio float32 `json:"pixel_shuffle_ratio"`
	} `json:"vision_config"`
}

// KV implements ModelConverter.
func (p *llama4Model) KV(t *Tokenizer) ggml.KV {
	kv := p.ModelParameters.KV(t)
	kv["general.architecture"] = "llama4"

	for k, v := range p.TextModel.KV(t) {
		if strings.HasPrefix(k, "llama.") {
			kv[strings.ReplaceAll(k, "llama.", "llama4.")] = v
		}
	}

	kv["llama4.intermediate_size"] = p.TextModel.IntermediateSizeMLP
	kv["llama4.intermediate_size_moe"] = p.TextModel.IntermediateSize

	kv["llama4.expert_count"] = p.TextModel.NumLocalExperts
	kv["llama4.expert_used_count"] = p.TextModel.NumExpertsPerToken
	kv["llama4.interleave_moe_layer_step"] = p.TextModel.InterleaveMOELayerStep
	kv["llama4.use_qk_norm"] = p.TextModel.UseQKNorm

	kv["llama4.vision.block_count"] = p.VisionModel.NumHiddenLayers
	kv["llama4.vision.embedding_length"] = p.VisionModel.HiddenSize
	kv["llama4.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
	kv["llama4.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
	kv["llama4.vision.image_size"] = p.VisionModel.ImageSize
	kv["llama4.vision.patch_size"] = p.VisionModel.PatchSize
	kv["llama4.vision.rope.freq_base"] = p.VisionModel.RopeTheta
	kv["llama4.vision.layer_norm_epsilon"] = p.VisionModel.NormEpsilon
	kv["llama4.vision.pixel_shuffle_ratio"] = p.VisionModel.PixelShuffleRatio
	return kv
}

// Replacements implements ModelConverter.
func (p *llama4Model) Replacements() []string {
	return append(
		p.TextModel.Replacements(),
		"language_model.", "",
		"vision_model", "v",
		"multi_modal_projector", "mm",
		"feed_forward.down_proj", "ffn_down",
		"feed_forward.up_proj", "ffn_up",
		"feed_forward.gate_proj", "ffn_gate",
		"feed_forward.", "ffn_",
		"shared_expert.down_proj", "down_shexp",
		"shared_expert.gate_proj", "gate_shexp",
		"shared_expert.up_proj", "up_shexp",
		"experts.down_proj", "down_exps.weight",
		"experts.gate_up_proj", "gate_up_exps.weight",
		"router", "gate_inp",
		"patch_embedding.linear", "patch_embedding",
	)
}

// Tensors implements ModelConverter.
func (p *llama4Model) Tensors(ts []Tensor) []ggml.Tensor {
	var out []ggml.Tensor

	var textTensors []Tensor
	for _, t := range ts {
		if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
			out = append(out, ggml.Tensor{
				Name:     t.Name(),
				Kind:     t.Kind(),
				Shape:    t.Shape(),
				WriterTo: t,
			})
		} else if strings.Contains(t.Name(), "ffn_gate_up_exps") {
			// gate and up projectors are fused
			// dims[1], dims[2] must be swapped
			// [experts, hidden_size, intermediate_size * 2] --> [experts, intermediate_size, hidden_size]
			halfDim := int(t.Shape()[2]) / 2

			newShape := slices.Clone(t.Shape())
			newShape[1], newShape[2] = newShape[2]/2, newShape[1]
			for i, name := range []string{"ffn_gate_exps", "ffn_up_exps"} {
				// clone tensor since we need separate repackers
				tt := t.Clone()
				tt.SetRepacker(p.repack(nil, nil, tensor.S(i*halfDim, (i+1)*halfDim)))
				out = append(out, ggml.Tensor{
					Name:     strings.ReplaceAll(tt.Name(), "ffn_gate_up_exps", name),
					Kind:     tt.Kind(),
					Shape:    newShape,
					WriterTo: tt,
				})
			}
		} else if strings.Contains(t.Name(), "ffn_down_exps") {
			// dims[1], dims[2] must be swapped
			// [experts, intermediate_size, hidden_size] --> [experts, hidden_size, intermediate_size]
			t.SetRepacker(p.repack())
			newShape := slices.Clone(t.Shape())
			newShape[1], newShape[2] = newShape[2], newShape[1]
			out = append(out, ggml.Tensor{
				Name:     t.Name(),
				Kind:     t.Kind(),
				Shape:    newShape,
				WriterTo: t,
			})
		} else {
			textTensors = append(textTensors, t)
		}
	}

	p.TextModel.skipRepack = true
	out = append(out, p.TextModel.Tensors(textTensors)...)
	return out
}

func (p *llama4Model) repack(slice ...tensor.Slice) Repacker {
	return func(name string, data []float32, shape []uint64) ([]float32, error) {
		dims := make([]int, len(shape))
		for i, dim := range shape {
			dims[i] = int(dim)
		}

		var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
		t, err := t.Slice(slice...)
		if err != nil {
			return nil, err
		}

		if err := t.T(0, 2, 1); err != nil {
			return nil, err
		}

		t = tensor.Materialize(t)
		// flatten tensor so it can be return as a vector
		if err := t.Reshape(t.Shape().TotalSize()); err != nil {
			return nil, err
		}

		return native.VectorF32(t.(*tensor.Dense))
	}
}