"src/diffusers/schedulers/scheduling_ddpm_parallel.py" did not exist on "d52388f48660de5776d9129945d5e960cad59d63"
gpu.go 11.6 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
//go:build linux || windows

package gpu

/*
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
#cgo windows LDFLAGS: -lpthread

#include "gpu_info.h"

*/
import "C"
import (
	"fmt"
	"log/slog"
	"os"
	"path/filepath"
	"runtime"
	"strings"
	"sync"
	"unsafe"

	"github.com/ollama/ollama/envconfig"
	"github.com/ollama/ollama/format"
)

type handles struct {
	deviceCount int
	cudart      *C.cudart_handle_t
	nvcuda      *C.nvcuda_handle_t
	oneapi      *C.oneapi_handle_t
}

const (
	cudaMinimumMemory = 457 * format.MebiByte
	rocmMinimumMemory = 457 * format.MebiByte
)

var gpuMutex sync.Mutex

// With our current CUDA compile flags, older than 5.0 will not work properly
var CudaComputeMin = [2]C.int{5, 0}

var RocmComputeMin = 9

// TODO find a better way to detect iGPU instead of minimum memory
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU

var CudartLinuxGlobs = []string{
	"/usr/local/cuda/lib64/libcudart.so*",
	"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
	"/usr/lib/x86_64-linux-gnu/libcudart.so*",
	"/usr/lib/wsl/lib/libcudart.so*",
	"/usr/lib/wsl/drivers/*/libcudart.so*",
	"/opt/cuda/lib64/libcudart.so*",
	"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
	"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
	"/usr/lib/aarch64-linux-gnu/libcudart.so*",
	"/usr/local/cuda/lib*/libcudart.so*",
	"/usr/lib*/libcudart.so*",
	"/usr/local/lib*/libcudart.so*",
}

var CudartWindowsGlobs = []string{
	"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
}

var NvcudaLinuxGlobs = []string{
	"/usr/local/cuda*/targets/*/lib/libcuda.so*",
	"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
	"/usr/lib/*-linux-gnu/libcuda.so*",
	"/usr/lib/wsl/lib/libcuda.so*",
	"/usr/lib/wsl/drivers/*/libcuda.so*",
	"/opt/cuda/lib*/libcuda.so*",
	"/usr/local/cuda/lib*/libcuda.so*",
	"/usr/lib*/libcuda.so*",
	"/usr/local/lib*/libcuda.so*",
}

var NvcudaWindowsGlobs = []string{
	"c:\\windows\\system*\\nvcuda.dll",
}

var OneapiWindowsGlobs = []string{
	"c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
}

var OneapiLinuxGlobs = []string{
	"/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
	"/usr/lib*/libze_intel_gpu.so*",
}

// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")

// Note: gpuMutex must already be held
func initGPUHandles() *handles {

	// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing

	gpuHandles := &handles{}
	var cudartMgmtName string
	var cudartMgmtPatterns []string
	var nvcudaMgmtName string
	var nvcudaMgmtPatterns []string

	tmpDir, _ := PayloadsDir()
	switch runtime.GOOS {
	case "windows":
		cudartMgmtName = "cudart64_*.dll"
		localAppData := os.Getenv("LOCALAPPDATA")
		cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)}
		cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...)
		// Aligned with driver, we can't carry as payloads
		nvcudaMgmtName = "nvcuda.dll"
		nvcudaMgmtPatterns = NvcudaWindowsGlobs
	case "linux":
		cudartMgmtName = "libcudart.so*"
		if tmpDir != "" {
			// TODO - add "payloads" for subprocess
			cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", cudartMgmtName)}
		}
		cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...)
		// Aligned with driver, we can't carry as payloads
		nvcudaMgmtName = "libcuda.so*"
		nvcudaMgmtPatterns = NvcudaLinuxGlobs
	default:
		return gpuHandles
	}

	slog.Debug("Detecting GPUs")
	nvcudaLibPaths := FindGPULibs(nvcudaMgmtName, nvcudaMgmtPatterns)
	if len(nvcudaLibPaths) > 0 {
		deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
		if nvcuda != nil {
			slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
			gpuHandles.nvcuda = nvcuda
			gpuHandles.deviceCount = deviceCount
			return gpuHandles
		}
	}

	cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns)
	if len(cudartLibPaths) > 0 {
		deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
		if cudart != nil {
			slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
			gpuHandles.cudart = cudart
			gpuHandles.deviceCount = deviceCount
			return gpuHandles
		}
	}

	return gpuHandles
}

func GetGPUInfo() GpuInfoList {
	// TODO - consider exploring lspci (and equivalent on windows) to check for
	// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
	gpuMutex.Lock()
	defer gpuMutex.Unlock()

	gpuHandles := initGPUHandles()
	defer func() {
		if gpuHandles.cudart != nil {
			C.cudart_release(*gpuHandles.cudart)
		}
		if gpuHandles.nvcuda != nil {
			C.nvcuda_release(*gpuHandles.nvcuda)
		}
	}()

	// All our GPU builds on x86 have AVX enabled, so fallback to CPU if we don't detect at least AVX
	cpuVariant := GetCPUVariant()
	if cpuVariant == "" && runtime.GOARCH == "amd64" {
		slog.Warn("CPU does not have AVX or AVX2, disabling GPU support.")
	}

	// On windows we bundle the nvidia library one level above the runner dir
	depPath := ""
	if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
		depPath = filepath.Dir(envconfig.RunnersDir)
	}

	var memInfo C.mem_info_t
	resp := []GpuInfo{}

	// NVIDIA first
	for i := 0; i < gpuHandles.deviceCount; i++ {
		// TODO once we support CPU compilation variants of GPU libraries refine this...
		if cpuVariant == "" && runtime.GOARCH == "amd64" {
			continue
		}
		if gpuHandles.cudart != nil || gpuHandles.nvcuda != nil {
			gpuInfo := GpuInfo{
				Library: "cuda",
			}
			var driverMajor int
			var driverMinor int
			if gpuHandles.cudart != nil {
				C.cudart_check_vram(*gpuHandles.cudart, C.int(i), &memInfo)
			} else {
				C.nvcuda_check_vram(*gpuHandles.nvcuda, C.int(i), &memInfo)
				driverMajor = int(gpuHandles.nvcuda.driver_major)
				driverMinor = int(gpuHandles.nvcuda.driver_minor)
			}
			if memInfo.err != nil {
				slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
				C.free(unsafe.Pointer(memInfo.err))
				continue
			}
			if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
				slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
				continue
			}
			gpuInfo.TotalMemory = uint64(memInfo.total)
			gpuInfo.FreeMemory = uint64(memInfo.free)
			gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
			gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
			gpuInfo.MinimumMemory = cudaMinimumMemory
			gpuInfo.DependencyPath = depPath
			gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
			gpuInfo.DriverMajor = int(driverMajor)
			gpuInfo.DriverMinor = int(driverMinor)

			// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
			resp = append(resp, gpuInfo)
		}
	}

	// Then AMD
	resp = append(resp, AMDGetGPUInfo()...)

	if len(resp) == 0 {
		C.cpu_check_ram(&memInfo)
		if memInfo.err != nil {
			slog.Info("error looking up CPU memory", "error", C.GoString(memInfo.err))
			C.free(unsafe.Pointer(memInfo.err))
			return resp
		}
		gpuInfo := GpuInfo{
			Library: "cpu",
			Variant: cpuVariant,
		}
		gpuInfo.TotalMemory = uint64(memInfo.total)
		gpuInfo.FreeMemory = uint64(memInfo.free)
		gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])

		resp = append(resp, gpuInfo)
	}

	return resp
}

func GetCPUMem() (memInfo, error) {
	var ret memInfo
	var info C.mem_info_t
	C.cpu_check_ram(&info)
	if info.err != nil {
		defer C.free(unsafe.Pointer(info.err))
		return ret, fmt.Errorf(C.GoString(info.err))
	}
	ret.FreeMemory = uint64(info.free)
	ret.TotalMemory = uint64(info.total)
	return ret, nil
}

func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
	// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
	var ldPaths []string
	var patterns []string
	gpuLibPaths := []string{}
	slog.Debug("Searching for GPU library", "name", baseLibName)

	switch runtime.GOOS {
	case "windows":
		ldPaths = strings.Split(os.Getenv("PATH"), ";")
	case "linux":
		ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
	default:
		return gpuLibPaths
	}
	// Start with whatever we find in the PATH/LD_LIBRARY_PATH
	for _, ldPath := range ldPaths {
		d, err := filepath.Abs(ldPath)
		if err != nil {
			continue
		}
		patterns = append(patterns, filepath.Join(d, baseLibName+"*"))
	}
	patterns = append(patterns, defaultPatterns...)
	slog.Debug("gpu library search", "globs", patterns)
	for _, pattern := range patterns {

		// Nvidia PhysX known to return bogus results
		if strings.Contains(pattern, "PhysX") {
			slog.Debug("skipping PhysX cuda library path", "path", pattern)
		}
		// Ignore glob discovery errors
		matches, _ := filepath.Glob(pattern)
		for _, match := range matches {
			// Resolve any links so we don't try the same lib multiple times
			// and weed out any dups across globs
			libPath := match
			tmp := match
			var err error
			for ; err == nil; tmp, err = os.Readlink(libPath) {
				if !filepath.IsAbs(tmp) {
					tmp = filepath.Join(filepath.Dir(libPath), tmp)
				}
				libPath = tmp
			}
			new := true
			for _, cmp := range gpuLibPaths {
				if cmp == libPath {
					new = false
					break
				}
			}
			if new {
				gpuLibPaths = append(gpuLibPaths, libPath)
			}
		}
	}
	slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
	return gpuLibPaths
}

func LoadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string) {
	var resp C.cudart_init_resp_t
	resp.ch.verbose = getVerboseState()
	for _, libPath := range cudartLibPaths {
		lib := C.CString(libPath)
		defer C.free(unsafe.Pointer(lib))
		C.cudart_init(lib, &resp)
		if resp.err != nil {
			slog.Debug("Unable to load cudart", "library", libPath, "error", C.GoString(resp.err))
			C.free(unsafe.Pointer(resp.err))
		} else {
			return int(resp.num_devices), &resp.ch, libPath
		}
	}
	return 0, nil, ""
}

func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
	var resp C.nvcuda_init_resp_t
	resp.ch.verbose = getVerboseState()
	for _, libPath := range nvcudaLibPaths {
		lib := C.CString(libPath)
		defer C.free(unsafe.Pointer(lib))
		C.nvcuda_init(lib, &resp)
		if resp.err != nil {
			slog.Debug("Unable to load nvcuda", "library", libPath, "error", C.GoString(resp.err))
			C.free(unsafe.Pointer(resp.err))
		} else {
			return int(resp.num_devices), &resp.ch, libPath
		}
	}
	return 0, nil, ""
}

func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
	var resp C.oneapi_init_resp_t
	resp.oh.verbose = getVerboseState()
	for _, libPath := range oneapiLibPaths {
		lib := C.CString(libPath)
		defer C.free(unsafe.Pointer(lib))
		C.oneapi_init(lib, &resp)
		if resp.err != nil {
			slog.Debug("Unable to load oneAPI management library", "library", libPath, "error", C.GoString(resp.err))
			C.free(unsafe.Pointer(resp.err))
		} else {
			return int(resp.num_devices), &resp.oh, libPath
		}
	}
	return 0, nil, ""
}

func getVerboseState() C.uint16_t {
	if envconfig.Debug {
		return C.uint16_t(1)
	}
	return C.uint16_t(0)
}

// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variable
//
// If different libraries are detected, the first one is what we use
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
	if len(l) == 0 {
		return "", ""
	}
	switch l[0].Library {
	case "cuda":
		return cudaGetVisibleDevicesEnv(l)
	case "rocm":
		return rocmGetVisibleDevicesEnv(l)
	case "oneapi":
		return oneapiGetVisibleDevicesEnv(l)
	default:
		slog.Debug("no filter required for library " + l[0].Library)
		return "", ""
	}
}