llama.go 4.02 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
package convert

import (
	"cmp"
	"errors"
	"fmt"
	"io"
	"os"
	"path/filepath"
	"regexp"
	"strings"

	"github.com/pdevine/tensor"
	"github.com/pdevine/tensor/native"

	"github.com/ollama/ollama/llm"
)

type LlamaModel struct {
	ModelData
}

func (m *LlamaModel) GetTensors() error {
	t, err := m.Format.GetTensors(m.Path, m.Params)
	if err != nil {
		return err
	}

	pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
	re, err := regexp.Compile(pattern)
	if err != nil {
		return err
	}

	for _, l := range t {
		matches := re.FindAllStringSubmatch(l.Name, -1)
		if len(matches) > 0 {
			switch m.Format.(type) {
			case *TorchFormat:
				wt := l.WriterTo.(torchWriterTo)
				wt.repacker = m.Repack
				l.WriterTo = wt
			case *SafetensorFormat:
				wt := l.WriterTo.(safetensorWriterTo)
				wt.repacker = m.Repack
				l.WriterTo = wt
			}
		}
		m.Tensors = append(m.Tensors, l)
	}

	return nil
}

func (m *LlamaModel) LoadVocab() (err error) {
	pre, ts, merges, err := parseTokens(filepath.Join(m.Path, "tokenizer.json"))
	if errors.Is(err, os.ErrNotExist) {
		return nil
	} else if err != nil {
		return err
	}

	m.Vocab = &Vocab{}
	for _, t := range ts {
		m.Vocab.Tokens = append(m.Vocab.Tokens, t.Content)
		m.Vocab.Types = append(m.Vocab.Types, t.Type())
	}

	m.Vocab.Merges = merges
	m.Params.PreTokenizer = pre
	return nil
}

func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
	kv := llm.KV{
		"general.architecture":                   "llama",
		"general.name":                           m.Name,
		"llama.vocab_size":                       uint32(len(m.Vocab.Tokens)),
		"llama.context_length":                   uint32(m.Params.ContextSize),
		"llama.embedding_length":                 uint32(m.Params.HiddenSize),
		"llama.block_count":                      uint32(m.Params.HiddenLayers),
		"llama.feed_forward_length":              uint32(m.Params.IntermediateSize),
		"llama.rope.freq_base":                   float32(m.Params.RopeFrequencyBase),
		"llama.rope.dimension_count":             uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
		"llama.attention.head_count":             uint32(m.Params.AttentionHeads),
		"llama.attention.head_count_kv":          uint32(m.Params.KeyValHeads),
		"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
		"general.file_type":                      uint32(1),
		"tokenizer.ggml.model":                   "gpt2",

		"tokenizer.ggml.pre":        m.Params.PreTokenizer,
		"tokenizer.ggml.tokens":     m.Vocab.Tokens,
		"tokenizer.ggml.token_type": m.Vocab.Types,

		"tokenizer.ggml.bos_token_id":     uint32(m.Params.BoSTokenID),
		"tokenizer.ggml.eos_token_id":     uint32(m.Params.EoSTokenID),
		"tokenizer.ggml.unknown_token_id": uint32(0),
	}

	if len(m.Vocab.Merges) > 0 {
		kv["tokenizer.ggml.merges"] = m.Vocab.Merges
	} else {
		kv["tokenizer.ggml.scores"] = m.Vocab.Scores
	}

	return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}

func (m *LlamaModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
	return llamaRepack(name, m.Params, data, shape)
}

func llamaRepack(name string, params *Params, data []float32, shape []uint64) ([]float32, error) {
	var dims []int
	for _, dim := range shape {
		if dim != 0 {
			dims = append(dims, int(dim))
		}
	}

	var heads int
	if strings.HasSuffix(name, "attn_q.weight") {
		heads = params.AttentionHeads
	} else if strings.HasSuffix(name, "attn_k.weight") {
		heads = cmp.Or(params.KeyValHeads, params.AttentionHeads)
	} else {
		return nil, fmt.Errorf("unknown tensor name: %s", name)
	}

	n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
	if err := n.Reshape(append([]int{heads, 2, dims[0] / heads / 2}, dims[1:]...)...); err != nil {
		return nil, err
	}

	if err := n.T(0, 2, 1, 3); err != nil {
		return nil, err
	}

	if err := n.Reshape(dims...); err != nil {
		return nil, err
	}

	if err := n.Transpose(); err != nil {
		return nil, err
	}

	ts, err := native.SelectF32(n, 1)
	if err != nil {
		return nil, err
	}

	var f32s []float32
	for _, t := range ts {
		f32s = append(f32s, t...)
	}

	return f32s, nil
}