convert.go 5.05 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
package convert

import (
	"cmp"
	"encoding/binary"
	"encoding/json"
	"fmt"
	"io"
	"log/slog"
	"os"
	"path/filepath"
	"slices"
	"strings"

	"google.golang.org/protobuf/proto"

	"github.com/ollama/ollama/convert/sentencepiece"
	"github.com/ollama/ollama/llm"
)

const (
	_ int32 = iota
	tokenTypeNormal
	tokenTypeUnknown
	tokenTypeControl
	tokenTypeUserDefined
	tokenTypeUnused
	tokenTypeByte
)

type Params struct {
	Architectures     []string `json:"architectures"`
	VocabSize         int      `json:"vocab_size"`
	HiddenSize        int      `json:"hidden_size"`       // n_embd
	HiddenLayers      int      `json:"num_hidden_layers"` // n_layer
	ContextSize       int      `json:"max_position_embeddings"`
	IntermediateSize  int      `json:"intermediate_size"`
	AttentionHeads    int      `json:"num_attention_heads"` // n_head
	KeyValHeads       int      `json:"num_key_value_heads"`
	NormEPS           float64  `json:"rms_norm_eps"`
	BoSTokenID        int      `json:"bos_token_id"`
	EoSTokenID        int      `json:"eos_token_id"`
	HeadDimension     int      `json:"head_dim"`
	PaddingTokenID    int      `json:"pad_token_id"`
	RopeFrequencyBase float64  `json:"rope_theta"`

	Experts     int `json:"num_local_experts"`
	ExpertsUsed int `json:"num_experts_per_tok"`

	PreTokenizer string

	ByteOrder
}

type ByteOrder interface {
	binary.ByteOrder
	binary.AppendByteOrder
}

type ModelArch interface {
	GetTensors() error
	LoadVocab() error
	WriteGGUF(io.WriteSeeker) error
}

type ModelFormat interface {
	GetLayerName(string) (string, error)
	GetTensors(string, *Params) ([]llm.Tensor, error)
	GetParams(string) (*Params, error)
	GetModelArch(string, string, *Params) (ModelArch, error)
}

type ModelData struct {
	Path    string
	Name    string
	Params  *Params
	Vocab   *Vocab
	Tensors []llm.Tensor
	Format  ModelFormat
}

func GetModelFormat(dirname string) (ModelFormat, error) {
	files, err := filepath.Glob(filepath.Join(dirname, "*"))
	if err != nil {
		return nil, err
	}

	for _, fn := range files {
		if strings.HasSuffix(fn, ".safetensors") {
			return &SafetensorFormat{}, nil
		} else if strings.HasSuffix(fn, ".bin") || strings.HasSuffix(fn, ".pth") {
			slog.Debug("model is torch")
			return &TorchFormat{}, nil
		}
	}

	return nil, fmt.Errorf("couldn't determine model format")
}

// Details on gguf's tokenizer can be found at:
// https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer
type Vocab struct {
	Tokens []string
	Scores []float32
	Types  []int32
	Merges []string
}

func LoadSentencePieceTokens(dirpath string, params *Params) (*Vocab, error) {
	slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
	in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
	if err != nil {
		return nil, err
	}

	// To regenerate sentencepiece from the protobufs use:
	// protoc -I=./ --go_out=./ sentencepiece_model.proto
	modelProto := &sentencepiece.ModelProto{}
	if err := proto.Unmarshal(in, modelProto); err != nil {
		return nil, err
	}

	v := &Vocab{
		Tokens: make([]string, 0),
		Scores: make([]float32, 0),
		Types:  make([]int32, 0),
	}

	pieces := modelProto.GetPieces()
	for _, p := range pieces {
		v.Tokens = append(v.Tokens, p.GetPiece())
		v.Scores = append(v.Scores, p.GetScore())
		t := p.GetType()
		switch t {
		case sentencepiece.ModelProto_SentencePiece_UNKNOWN:
		case sentencepiece.ModelProto_SentencePiece_CONTROL:
		case sentencepiece.ModelProto_SentencePiece_UNUSED:
		case sentencepiece.ModelProto_SentencePiece_BYTE:
		default:
			t = sentencepiece.ModelProto_SentencePiece_NORMAL
		}
		v.Types = append(v.Types, int32(t))
	}

	slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens)))

	// add any additional tokens
	addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json"))
	if os.IsNotExist(err) {
		return v, nil
	} else if err != nil {
		return nil, err
	}

	slog.Info("reading user defined tokens")

	var extraTokenData map[string]int
	if err := json.Unmarshal(addIn, &extraTokenData); err != nil {
		return nil, err
	}

	type token struct {
		key string
		pos int
	}

	extraTokens := make([]token, 0)
	for k, id := range extraTokenData {
		extraTokens = append(extraTokens, token{k, id})
	}

	slices.SortFunc(extraTokens, func(a, b token) int {
		return cmp.Compare(a.pos, b.pos)
	})

	numToks := len(v.Tokens)

	for cnt, t := range extraTokens {
		// the token id should match the specific index for the total number of tokens
		if t.pos != cnt+numToks {
			return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key)
		}
		v.Tokens = append(v.Tokens, t.key)
		v.Scores = append(v.Scores, -1000.0)
		v.Types = append(v.Types, tokenTypeUserDefined)
	}
	slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))

	if params.VocabSize > len(v.Tokens) {
		missingTokens := params.VocabSize - len(v.Tokens)
		slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens))
		for cnt := 0; cnt < missingTokens; cnt++ {
			v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1))
			v.Scores = append(v.Scores, -1)
			v.Types = append(v.Types, tokenTypeUserDefined)
		}
	}

	return v, nil
}