model_text.go 13.5 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
package gemma3n

import (
	"cmp"
	"math"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/ml/nn/fast"
	"github.com/ollama/ollama/ml/nn/rope"
	"github.com/ollama/ollama/model/input"
)

type TextModel struct {
	TokenEmbedding *TextScaledWordEmbedding `gguf:"token_embd"`

	*PerLayerProjector

	AltupEmbd   *nn.Linear `gguf:"altup_proj"`
	AltupUnembd *nn.Linear `gguf:"altup_unembd_proj"`

	TextLayers []TextLayer `gguf:"blk"`
	OutputNorm *nn.RMSNorm `gguf:"output_norm"`
	Output     *nn.Linear  `gguf:"output,alt:token_embd"`

	TextOptions
}

func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cache) (ml.Tensor, error) {
	positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
	// Create a tensor of a single float32 value of 1.0 to use for altup correction
	one := ctx.Input().FromFloatSlice([]float32{1.0}, 1)

	inputs := m.TokenEmbedding.Forward(ctx, batch.Inputs, math.Sqrt(float64(m.hiddenSize)))
	inputsPerLayer := m.PerLayerProjector.Forward(ctx, batch, inputs, &m.TextOptions)

	targetMagnitude := inputs.Sqr(ctx).Mean(ctx).Sqrt(ctx)
	targetMagnitude = targetMagnitude.Repeat(ctx, 2, m.altupInputs-1)

	hiddenState := inputs.Repeat(ctx, 2, m.altupInputs-1)
	altupProj := m.AltupEmbd.Forward(ctx, hiddenState)
	altupProj = altupProj.Mul(ctx, targetMagnitude.Div(ctx, altupProj.Sqr(ctx).Mean(ctx).Sqrt(ctx)))

	hiddenStates := inputs.Concat(ctx, altupProj, 2)

	firstSharedKeyValue := m.hiddenLayers - m.sharedKeyValueLayers
	for i, layer := range m.TextLayers {
		if i < firstSharedKeyValue {
			cache.SetLayer(i)
		} else if m.isLocal(i) {
			cache.SetLayer(firstSharedKeyValue - 2)
		} else {
			cache.SetLayer(firstSharedKeyValue - 1)
		}

		var layerType int
		ropeBase := m.ropeBase
		if m.isLocal(i) {
			layerType = 1
			ropeBase = m.ropeBaseLocal
		}

		cache.(*kvcache.WrapperCache).SetLayerType(layerType)

		// inputPerLayer = inputsPerLayer[:, i, :]
		inputPerLayer := inputsPerLayer.View(ctx, i*inputsPerLayer.Stride(1), inputsPerLayer.Dim(0), inputsPerLayer.Stride(2), inputsPerLayer.Dim(2))
		hiddenStates = layer.Forward(ctx, hiddenStates, inputPerLayer, positions, one, cache, i >= firstSharedKeyValue, ropeBase, float64(m.activationSparsityScale[i]), &m.TextOptions)
	}

	// hiddenStates = hiddenStates[:, :, 0]
	hiddenStates0 := hiddenStates.View(ctx, 0, hiddenStates.Dim(0), hiddenStates.Stride(1), hiddenStates.Dim(1))
	targetMagnitude = hiddenStates0.Sqr(ctx).Mean(ctx).Sqrt(ctx)
	targetMagnitude = targetMagnitude.Repeat(ctx, 2, m.altupInputs-1)

	// hiddenState = hiddenStates[:, :, 1:]
	hiddenState = hiddenStates.View(ctx, hiddenStates.Stride(2), hiddenStates.Dim(0), hiddenStates.Stride(1), hiddenStates.Dim(1), hiddenStates.Stride(2), m.altupInputs-1)
	altupUnembdProj := m.AltupUnembd.Forward(ctx, hiddenState)
	altupUnembdProj = altupUnembdProj.Mul(ctx, targetMagnitude.Div(ctx, altupUnembdProj.Sqr(ctx).Mean(ctx).Sqrt(ctx)))

	hiddenStates = hiddenStates0.Concat(ctx, altupUnembdProj, 2)

	hiddenStates = hiddenStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx).Mean(ctx)
	hiddenStates = hiddenStates.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
	hiddenStates = hiddenStates.Rows(ctx, ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs)))

	hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
	return m.Output.Forward(ctx, hiddenStates), nil
}

func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	ropeBase := m.ropeBase
	if m.isLocal(layer) {
		ropeBase = m.ropeBaseLocal
	}

	return fast.RoPE(ctx, key, shift, m.headDim(), ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
}

type TextScaledWordEmbedding struct {
	*nn.Embedding
}

func (e TextScaledWordEmbedding) Forward(ctx ml.Context, inputIDs ml.Tensor, scale float64) ml.Tensor {
	return e.Embedding.Forward(ctx, inputIDs).Scale(ctx, scale)
}

type PerLayerProjector struct {
	TokenEmbedding *TextScaledWordEmbedding `gguf:"per_layer_token_embd"`
	Projector      *nn.Linear               `gguf:"per_layer_model_proj"`
	Norm           *nn.RMSNorm              `gguf:"per_layer_proj_norm"`
}

func (p PerLayerProjector) Forward(ctx ml.Context, batch input.Batch, inputs ml.Tensor, opts *TextOptions) ml.Tensor {
	inputsPerLayer := p.TokenEmbedding.Forward(ctx, batch.Inputs, math.Sqrt(float64(opts.hiddenSizePerLayerInput)))
	inputsPerLayer = inputsPerLayer.Reshape(ctx, opts.hiddenSizePerLayerInput, opts.hiddenLayers, batch.Inputs.Dim(0), batch.Inputs.Dim(1))

	perLayerProjection := p.Projector.Forward(ctx, inputs)
	perLayerProjection = perLayerProjection.Scale(ctx, math.Sqrt(float64(opts.hiddenSize)))
	perLayerProjection = perLayerProjection.Reshape(ctx, opts.hiddenSizePerLayerInput, opts.hiddenLayers, inputs.Dim(1))
	perLayerProjection = p.Norm.Forward(ctx, perLayerProjection, opts.eps)

	if inputsPerLayer != nil {
		perLayerProjection = perLayerProjection.Add(ctx, inputsPerLayer)
		perLayerProjection = perLayerProjection.Scale(ctx, 1/math.Sqrt(2))
	}

	return perLayerProjection
}

type TextLayer struct {
	*AltUp
	*Laurel

	AttentionNorm     *nn.RMSNorm `gguf:"attn_norm"`
	Attention         *TextAttention
	PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`

	MLPNorm     *nn.RMSNorm `gguf:"ffn_norm"`
	MLP         *TextMLP
	PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`

	PerLayerInputGate  *nn.Linear  `gguf:"inp_gate"`
	PerLayerProjection *nn.Linear  `gguf:"proj"`
	PostPerLayerNorm   *nn.RMSNorm `gguf:"post_norm"`
}

func (d TextLayer) Forward(ctx ml.Context, hiddenStates, perLayerInput, positions, one ml.Tensor, cache kvcache.Cache, sharedKV bool, ropeBase float32, activationSparsityScale float64, opts *TextOptions) ml.Tensor {
	predictions := d.Predict(ctx, hiddenStates, opts)
	active := opts.altupActive(ctx, predictions)

	attn := d.AttentionNorm.Forward(ctx, active, opts.eps)
	laurel := d.Laurel.Forward(ctx, attn, opts)

	attn = d.Attention.Forward(ctx, attn, positions, cache, sharedKV, ropeBase, opts)
	attn = d.PostAttentionNorm.Forward(ctx, attn, opts.eps)
	attn = active.Add(ctx, attn)
	attn = attn.Add(ctx, laurel).Scale(ctx, 1/math.Sqrt(2))

	mlp := d.MLPNorm.Forward(ctx, attn, opts.eps)
	mlp = d.MLP.Forward(ctx, mlp, activationSparsityScale)
	mlp = d.PostMLPNorm.Forward(ctx, mlp, opts.eps)
	mlp = attn.Add(ctx, mlp)

	predictions = d.Correct(ctx, predictions, mlp, one, opts)
	active = opts.altupActive(ctx, predictions)
	if opts.altupCorrectScale {
		active = d.ScaleCorrectedOutput(ctx, active)
	}

	active = d.PerLayerInputGate.Forward(ctx, active)
	active = active.GELU(ctx)
	active = active.Mul(ctx, perLayerInput)

	active = d.PerLayerProjection.Forward(ctx, active)
	active = d.PostPerLayerNorm.Forward(ctx, active, opts.eps)

	// inactive := predictions[:, :, 1:]
	inactive := predictions.View(ctx, predictions.Stride(2), predictions.Dim(0), predictions.Stride(1), predictions.Dim(1), predictions.Stride(2), predictions.Dim(2)-1)
	active = inactive.Add(ctx, active)

	predictions0 := predictions.View(ctx, 0, predictions.Dim(0), predictions.Stride(1), predictions.Dim(1))
	return predictions0.Concat(ctx, active, 2)
}

type AltUp struct {
	CorrectionScale       ml.Tensor   `gguf:"altup_correct_scale.weight"`
	PredictionCoefficient *nn.Linear  `gguf:"altup_predict_coef"`
	CorrectionCoefficient *nn.Linear  `gguf:"altup_correct_coef"`
	Router                *nn.Linear  `gguf:"altup_router"`
	RouterNorm            *nn.RMSNorm `gguf:"altup_router_norm"`
}

func (a AltUp) computeRouterModalities(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
	routerInputs := a.RouterNorm.Forward(ctx, hiddenStates, opts.eps).Scale(ctx, 1.0/float64(opts.hiddenSize))
	return a.Router.Forward(ctx, routerInputs).Tanh(ctx)
}

func (a AltUp) Predict(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
	modalities := a.computeRouterModalities(ctx, opts.altupActive(ctx, hiddenStates), opts)

	coefficients := a.PredictionCoefficient.Forward(ctx, modalities)
	coefficients = coefficients.Reshape(ctx, opts.altupInputs, opts.altupInputs, coefficients.Dim(1), coefficients.Dim(2))

206
207
208
	predictions := coefficients.Mulmat(ctx, hiddenStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx))
	predictions = predictions.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
	return predictions.Add(ctx, hiddenStates)
Michael Yang's avatar
Michael Yang committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
}

func (a AltUp) Correct(ctx ml.Context, predictions, activated, one ml.Tensor, opts *TextOptions) ml.Tensor {
	innovation := activated.Sub(ctx, opts.altupActive(ctx, predictions))
	innovation = innovation.Repeat(ctx, 2, opts.altupInputs)

	modalities := a.computeRouterModalities(ctx, activated, opts)
	coefficients := a.CorrectionCoefficient.Forward(ctx, modalities)
	coefficients = coefficients.Add(ctx, one)

	coefficients = coefficients.Reshape(ctx, 1, coefficients.Dim(0), coefficients.Dim(1))
	coefficients = coefficients.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)

	corrected := innovation.Mul(ctx, coefficients)
	corrected = corrected.Add(ctx, predictions)
	return corrected
}

func (a AltUp) ScaleCorrectedOutput(ctx ml.Context, predictions ml.Tensor) ml.Tensor {
	return predictions.Mul(ctx, a.CorrectionScale)
}

type Laurel struct {
	LinearLeft     *nn.Linear  `gguf:"laurel_l"`
	LinearRight    *nn.Linear  `gguf:"laurel_r"`
	PostLaurelNorm *nn.RMSNorm `gguf:"laurel_post_norm"`
}

func (l Laurel) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
	residual := hiddenStates
	hiddenStates = l.LinearLeft.Forward(ctx, hiddenStates)
	hiddenStates = l.LinearRight.Forward(ctx, hiddenStates)
	hiddenStates = l.PostLaurelNorm.Forward(ctx, hiddenStates, opts.eps)
	return hiddenStates.Add(ctx, residual)
}

type TextAttention struct {
	Query     *nn.Linear  `gguf:"attn_q"`
	QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
	Key       *nn.Linear  `gguf:"attn_k"`
	KeyNorm   *nn.RMSNorm `gguf:"attn_k_norm"`
	Value     *nn.Linear  `gguf:"attn_v"`
	Output    *nn.Linear  `gguf:"attn_output"`
}

func (attn TextAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, sharedKV bool, ropeBase float32, opts *TextOptions) ml.Tensor {
	batchSize := hiddenStates.Dim(1)

	query := attn.Query.Forward(ctx, hiddenStates)
	query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
	query = attn.QueryNorm.Forward(ctx, query, opts.eps)
	query = fast.RoPE(ctx, query, positions, opts.headDim(), ropeBase, opts.ropeScale, rope.WithTypeNeoX())

	var key, value ml.Tensor
	if !sharedKV {
		key = attn.Key.Forward(ctx, hiddenStates)
		key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
		key = attn.KeyNorm.Forward(ctx, key, opts.eps)
		key = fast.RoPE(ctx, key, positions, opts.headDim(), ropeBase, opts.ropeScale, rope.WithTypeNeoX())

		value = attn.Value.Forward(ctx, hiddenStates)
		value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
		value = value.RMSNorm(ctx, nil, opts.eps)
	}

	attention := nn.Attention(ctx, query, key, value, 1., cache)
	attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
	return attn.Output.Forward(ctx, attention)
}

type TextMLP struct {
	Gate *nn.Linear `gguf:"ffn_gate"`
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
}

func (mlp TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, activationSparsityScale float64) ml.Tensor {
	upStates := mlp.Up.Forward(ctx, hiddenStates)
	hiddenStates = mlp.Gate.Forward(ctx, hiddenStates)
	if activationSparsityScale > 0 {
		mean := hiddenStates.Mean(ctx)
		std := hiddenStates.Stddev(ctx).Scale(ctx, activationSparsityScale)
		cutoff := mean.Add(ctx, std)
		hiddenStates = hiddenStates.Sub(ctx, cutoff).RELU(ctx)
	}

	hiddenStates = hiddenStates.GELU(ctx).Mul(ctx, upStates)
	hiddenStates = mlp.Down.Forward(ctx, hiddenStates)
	return hiddenStates
}

type TextOptions struct {
	hiddenLayers            int
	hiddenSize              int
	hiddenSizePerLayerInput int
	numHeads, numKVHeads    int
	keyLength, valueLength  int
	sharedKeyValueLayers    int

	altupActiveIndex  int
	altupInputs       int
	altupCorrectScale bool

	eps           float32
	ropeBase      float32
	ropeBaseLocal float32
	ropeScale     float32

	slidingWindowPattern    []bool
	activationSparsityScale []float32
}

func (o *TextOptions) altupActive(ctx ml.Context, t ml.Tensor) ml.Tensor {
	// t[:, :, o.altupActiveIndex]
	return t.View(ctx, o.altupActiveIndex*t.Stride(2), t.Dim(0), t.Stride(1), t.Dim(1))
}

func (o *TextOptions) headDim() int {
	return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}

func (o *TextOptions) isLocal(i int) bool {
	return o.slidingWindowPattern[i]
}

func newTextModel(c fs.Config) *TextModel {
	return &TextModel{
		TextLayers: make([]TextLayer, c.Uint("block_count")),
		TextOptions: TextOptions{
			hiddenLayers:            int(c.Uint("block_count")),
			hiddenSize:              int(c.Uint("embedding_length")),
			hiddenSizePerLayerInput: int(c.Uint("embedding_length_per_layer_input")),
			numHeads:                int(c.Uint("attention.head_count")),
			numKVHeads:              int(c.Uint("attention.head_count_kv")),
			keyLength:               int(c.Uint("attention.key_length")),
			valueLength:             int(c.Uint("attention.value_length")),
			sharedKeyValueLayers:    int(c.Uint("attention.shared_kv_layers")),

			altupActiveIndex: int(c.Uint("altup.active_idx")),
			altupInputs:      int(c.Uint("altup.num_inputs")),

			eps:           c.Float("attention.layer_norm_rms_epsilon", 1e-06),
			ropeBase:      c.Float("rope.freq_base", 1_000_000),
			ropeBaseLocal: c.Float("rope.freq_base_local", 10_000),
			ropeScale:     c.Float("rope.freq_scale", 1.0),

			slidingWindowPattern:    c.Bools("attention.sliding_window_pattern"),
			activationSparsityScale: c.Floats("activation_sparsity_scale"),
		},
	}
}