ggml-cuda.cu 140 KB
Newer Older
1
#include "ggml-cuda.h"
2
#include "ggml-impl.h"
3
4
5
6
7
#include "ggml-backend-impl.h"

#include "ggml-cuda/common.cuh"
#include "ggml-cuda/acc.cuh"
#include "ggml-cuda/arange.cuh"
8
#include "ggml-cuda/argmax.cuh"
9
10
11
12
13
14
#include "ggml-cuda/argsort.cuh"
#include "ggml-cuda/binbcast.cuh"
#include "ggml-cuda/clamp.cuh"
#include "ggml-cuda/concat.cuh"
#include "ggml-cuda/conv-transpose-1d.cuh"
#include "ggml-cuda/convert.cuh"
15
#include "ggml-cuda/count-equal.cuh"
16
17
18
19
20
21
22
#include "ggml-cuda/cpy.cuh"
#include "ggml-cuda/cross-entropy-loss.cuh"
#include "ggml-cuda/diagmask.cuh"
#include "ggml-cuda/fattn.cuh"
#include "ggml-cuda/getrows.cuh"
#include "ggml-cuda/im2col.cuh"
#include "ggml-cuda/mmq.cuh"
23
#include "ggml-cuda/mmv.cuh"
24
25
#include "ggml-cuda/mmvq.cuh"
#include "ggml-cuda/norm.cuh"
26
27
#include "ggml-cuda/opt-step-adamw.cuh"
#include "ggml-cuda/out-prod.cuh"
28
29
30
31
32
33
#include "ggml-cuda/pad.cuh"
#include "ggml-cuda/pool2d.cuh"
#include "ggml-cuda/quantize.cuh"
#include "ggml-cuda/rope.cuh"
#include "ggml-cuda/scale.cuh"
#include "ggml-cuda/softmax.cuh"
34
35
#include "ggml-cuda/ssm-conv.cuh"
#include "ggml-cuda/ssm-scan.cuh"
36
#include "ggml-cuda/sum.cuh"
37
#include "ggml-cuda/sumrows.cuh"
Michael Yang's avatar
Michael Yang committed
38
#include "ggml-cuda/mean.cuh"
39
40
41
#include "ggml-cuda/tsembd.cuh"
#include "ggml-cuda/unary.cuh"
#include "ggml-cuda/upscale.cuh"
42
#include "ggml-cuda/wkv.cuh"
43
44
#include "ggml-cuda/gla.cuh"
#include "ggml.h"
45
46
47
48

#include <algorithm>
#include <array>
#include <atomic>
49
#include <charconv>
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <float.h>
#include <limits>
#include <map>
#include <memory>
#include <mutex>
#include <stdint.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string>
#include <vector>

static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");

[[noreturn]]
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
    int id = -1; // in case cudaGetDevice fails
70
    (void)cudaGetDevice(&id);
71

72
73
74
75
76
    GGML_LOG_ERROR(GGML_CUDA_NAME " error: %s\n", msg);
    GGML_LOG_ERROR("  current device: %d, in function %s at %s:%d\n", id, func, file, line);
    GGML_LOG_ERROR("  %s\n", stmt);
    // abort with GGML_ABORT to get a stack trace
    GGML_ABORT(GGML_CUDA_NAME " error");
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
}

// this is faster on Windows
// probably because the Windows CUDA libraries forget to make this check before invoking the drivers
void ggml_cuda_set_device(int device) {
    int current_device;
    CUDA_CHECK(cudaGetDevice(&current_device));

    if (device == current_device) {
        return;
    }

    CUDA_CHECK(cudaSetDevice(device));
}

int ggml_cuda_get_device() {
    int id;
    CUDA_CHECK(cudaGetDevice(&id));
    return id;
}

static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
    ggml_cuda_set_device(device);
    cudaError_t err;
    if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr)
    {
        err = cudaMallocManaged(ptr, size);
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#if defined(GGML_USE_HIP)
        if (err == hipSuccess) {
            CUDA_CHECK(cudaMemAdvise(*ptr, size, hipMemAdviseSetCoarseGrain, device));
        }

        // fall back to cudaMalloc if not supported (e.g. on Windows)
        if (err == hipErrorNotSupported) {
            static bool warned_unsupported = false;
            if (!warned_unsupported) {
                GGML_LOG_WARN("hipMallocManaged unsupported, falling back to hipMalloc.\n");
                warned_unsupported = true;
            }

            err = cudaMalloc(ptr, size);
        }
#endif // defined(GGML_USE_HIP)
120
121
122
123
124
125
126
127
    }
    else
    {
        err = cudaMalloc(ptr, size);
    }
    return err;
}

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
static int ggml_cuda_parse_id(char devName[]) {
    // A list of possible Target IDs can be found under the rocclr/clr repo in device.cpp
    // these values are not stable so this is susceptible to breakage
    // https://github.com/ROCm/clr/blob/amd-staging/rocclr/device/device.cpp
    int archMajor = 0x0;
    int archMinor = 0x0;
    int archNum = GGML_CUDA_CC_OFFSET_AMD;
    int archLen = strlen(devName);
    char archName[archLen + 1];

    // strip leading 'gfx' while copying into our buffer
    if (archLen > 3) {
        strcpy(archName, &devName[3]);
        archLen -= 3;
    }

    // trim trailing :xnack- or :sramecc- statuses
    archLen = strcspn(archName, ":");
    archName[archLen] = '\0';

    // tease out the version information
    if (archLen > 8) {
        // versions labeled generic use '-' as delimiter
        // strip the trailing "-generic" then iterate through what remains
        if ((strstr(archName, "-generic"))) {
            archName[archLen - 8] = '\0';
            char * pch;
            if ((pch = strtok(archName, "-"))) {
                archMajor = (int)strtoul(pch, 0, 16);
                if ((pch = strtok(NULL, "-"))) {
                    archMinor = 0x10 * (int)strtoul(pch, 0, 16);
                }
            }
        }
    } else if (archLen >= 3) {
        // last two digits should be the minor * 0x10 + stepping
        archMinor = (int)strtoul(&archName[archLen - 2], 0, 16);
        archName[archLen - 2] = '\0';

        // only the major version remains
        archMajor = (int)strtoul(archName, 0, 16);
    }
    archNum += archMajor * 0x100;
    archNum += archMinor;
    return archNum;
}
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)

177
178
179
180
static ggml_cuda_device_info ggml_cuda_init() {
#ifdef __HIP_PLATFORM_AMD__
    // Workaround for a rocBLAS bug when using multiple graphics cards:
    // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    {
        int major_version = 0;
        size_t version_length = 0;
        if (rocblas_get_version_string_size(&version_length) == rocblas_status_success) {
            std::vector<char> version(version_length+1, '\0');
            if (rocblas_get_version_string(version.data(), version.size()) == rocblas_status_success) {
                version.resize(::strlen(version.data()));
                int parsed_value = 0;
                if (std::from_chars(version.data(), version.data() + version.size(), parsed_value).ec == std::errc()) {
                    major_version = parsed_value;
                }
            }
        }
        if (major_version < 4) {
            GGML_LOG_DEBUG(GGML_CUDA_NAME " calling rocblas_initialize as a workaround for a rocBLAS bug\n");
            rocblas_initialize();
            CUDA_CHECK(cudaDeviceSynchronize());
        }
    }
200
201
202
203
204
205
#endif

    ggml_cuda_device_info info = {};

    cudaError_t err = cudaGetDeviceCount(&info.device_count);
    if (err != cudaSuccess) {
206
        GGML_LOG_ERROR("%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
207
208
209
210
211
212
213
        return info;
    }

    GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);

    int64_t total_vram = 0;
#ifdef GGML_CUDA_FORCE_MMQ
214
    GGML_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ:    yes\n", __func__);
215
#else
216
    GGML_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ:    no\n", __func__);
217
218
#endif // GGML_CUDA_FORCE_MMQ
#ifdef GGML_CUDA_FORCE_CUBLAS
219
    GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: yes\n", __func__);
220
#else
221
    GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: no\n", __func__);
222
#endif // GGML_CUDA_FORCE_CUBLAS
223
    GGML_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
224
225
226
    for (int id = 0; id < info.device_count; ++id) {
        int device_vmm = 0;

227
#if defined(GGML_USE_VMM)
228
229
230
231
232
233
234
235
236
237
238
        CUdevice device;
        CU_CHECK(cuDeviceGet(&device, id));
        CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));

        if (device_vmm) {
            CUmemAllocationProp alloc_prop = {};
            alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
            alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
            alloc_prop.location.id = id;
            CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
        }
239
#endif // defined(GGML_USE_VMM)
240
241
242
243
244
245
246
247
        info.devices[id].vmm = !!device_vmm;

        cudaDeviceProp prop;
        CUDA_CHECK(cudaGetDeviceProperties(&prop, id));

        info.default_tensor_split[id] = total_vram;
        total_vram += prop.totalGlobalMem;

248
249
250
        info.devices[id].nsm       = prop.multiProcessorCount;
        info.devices[id].smpb      = prop.sharedMemPerBlock;
        info.devices[id].warp_size = prop.warpSize;
251
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
252
        info.devices[id].smpbo = prop.sharedMemPerBlock;
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

        info.devices[id].cc = ggml_cuda_parse_id(prop.gcnArchName);
        if ((info.devices[id].cc & 0xff00) == 0x0) {
            GGML_LOG_WARN("invalid architecture ID received for device %d %s: %s  cc %d.%d\n",
                            id, prop.name, prop.gcnArchName, prop.major, prop.minor);

            // Fallback to prop.major and prop.minor
            if (prop.major > 0) {
                info.devices[id].cc = GGML_CUDA_CC_OFFSET_AMD + prop.major * 0x100;
                info.devices[id].cc += prop.minor * 0x10;
            }
        }
        GGML_LOG_INFO("  Device %d: %s, %s (0x%x), VMM: %s, Wave Size: %d\n",
                      id, prop.name, prop.gcnArchName, info.devices[id].cc & 0xffff,
                      device_vmm ? "yes" : "no", prop.warpSize);
#elif defined(GGML_USE_MUSA)
269
270
        // FIXME: Ensure compatibility with varying warp sizes across different MUSA archs.
        info.devices[id].warp_size = 32;
271
        info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
272
273
        info.devices[id].cc = GGML_CUDA_CC_OFFSET_MTHREADS + prop.major * 0x100;
        info.devices[id].cc += prop.minor * 0x10;
274
275
        GGML_LOG_INFO("  Device %d: %s, compute capability %d.%d, VMM: %s\n",
                        id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
276
277
278
#else
        info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
        info.devices[id].cc = 100*prop.major + 10*prop.minor;
279
280
        GGML_LOG_INFO("  Device %d: %s, compute capability %d.%d, VMM: %s\n",
                        id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
281
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    }

    for (int id = 0; id < info.device_count; ++id) {
        info.default_tensor_split[id] /= total_vram;
    }

    // configure logging to stdout
    // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));

    return info;
}

const ggml_cuda_device_info & ggml_cuda_info() {
    static ggml_cuda_device_info info = ggml_cuda_init();
    return info;
}

// #define DEBUG_CUDA_MALLOC

// buffer pool for cuda (legacy)
struct ggml_cuda_pool_leg : public ggml_cuda_pool {
    static const int MAX_BUFFERS = 256;

    int device;
    struct ggml_cuda_buffer {
        void * ptr = nullptr;
        size_t size = 0;
    };

    ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
    size_t pool_size = 0;

    explicit ggml_cuda_pool_leg(int device) :
        device(device) {
    }

    ~ggml_cuda_pool_leg() {
        ggml_cuda_set_device(device);
        for (int i = 0; i < MAX_BUFFERS; ++i) {
            ggml_cuda_buffer & b = buffer_pool[i];
            if (b.ptr != nullptr) {
                CUDA_CHECK(cudaFree(b.ptr));
                pool_size -= b.size;
            }
        }
        GGML_ASSERT(pool_size == 0);
    }

    void * alloc(size_t size, size_t * actual_size) override {
#ifdef DEBUG_CUDA_MALLOC
        int nnz = 0;
        size_t max_size = 0;
#endif
        size_t best_diff = 1ull << 36;
        int ibest = -1;
        for (int i = 0; i < MAX_BUFFERS; ++i) {
            ggml_cuda_buffer& b = buffer_pool[i];
            if (b.ptr != nullptr) {
#ifdef DEBUG_CUDA_MALLOC
                ++nnz;
                if (b.size > max_size) max_size = b.size;
#endif
                if (b.size >= size) {
                    size_t diff = b.size - size;
                    if (diff < best_diff) {
                        best_diff = diff;
                        ibest = i;
                        if (!best_diff) {
                            void * ptr = b.ptr;
                            *actual_size = b.size;
                            b.ptr = nullptr;
                            b.size = 0;
                            return ptr;
                        }
                    }
                }
            }
        }
        if (ibest >= 0) {
            ggml_cuda_buffer& b = buffer_pool[ibest];
            void * ptr = b.ptr;
            *actual_size = b.size;
            b.ptr = nullptr;
            b.size = 0;
            return ptr;
        }
        void * ptr;
        size_t look_ahead_size = (size_t) (1.05 * size);
        look_ahead_size = 256 * ((look_ahead_size + 255)/256);
        ggml_cuda_set_device(device);
        CUDA_CHECK(ggml_cuda_device_malloc(&ptr, look_ahead_size, device));
        *actual_size = look_ahead_size;
        pool_size += look_ahead_size;
#ifdef DEBUG_CUDA_MALLOC
376
        GGML_LOG_INFO("%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
377
378
379
380
381
382
383
384
385
386
387
388
389
390
                           (uint32_t)(max_size / 1024 / 1024), (uint32_t)(pool_size / 1024 / 1024), (uint32_t)(size / 1024 / 1024));
#endif
        return ptr;
    }

    void free(void * ptr, size_t size) override {
        for (int i = 0; i < MAX_BUFFERS; ++i) {
            ggml_cuda_buffer& b = buffer_pool[i];
            if (b.ptr == nullptr) {
                b.ptr = ptr;
                b.size = size;
                return;
            }
        }
391
        GGML_LOG_DEBUG(GGML_CUDA_NAME " buffer pool full, increase MAX_CUDA_BUFFERS\n");
392
393
394
395
396
397
398
        ggml_cuda_set_device(device);
        CUDA_CHECK(cudaFree(ptr));
        pool_size -= size;
    }
};

// pool with virtual memory
399
#if defined(GGML_USE_VMM)
400
401
402
403
404
405
406
407
struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
    static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB

    int device;
    CUdeviceptr pool_addr = 0;
    size_t pool_used = 0;
    size_t pool_size = 0;
    size_t granularity;
408
409
410
#if defined(GGML_USE_HIP)
    std::vector<std::pair<CUdeviceptr, size_t>> mappings;
#endif
411
412
413
414
415
416
417
418

    explicit ggml_cuda_pool_vmm(int device) :
        device(device),
        granularity(ggml_cuda_info().devices[device].vmm_granularity) {
    }

    ~ggml_cuda_pool_vmm() {
        if (pool_addr != 0) {
419
420
421
422
423
424
#if defined(GGML_USE_HIP)
            // Workaround for https://github.com/ROCm/ROCR-Runtime/issues/285
            for (std::pair<CUdeviceptr, size_t> & mapping : mappings) {
                CU_CHECK(cuMemUnmap(mapping.first, mapping.second));
            }
#else
425
            CU_CHECK(cuMemUnmap(pool_addr, pool_size));
426
#endif
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
            CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
        }
    }

    void * alloc(size_t size, size_t * actual_size) override {
        // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
        const size_t alignment = 128;
        size = alignment * ((size + alignment - 1) / alignment);

        size_t avail = pool_size - pool_used;

        if (size > avail) {
            // round up to the next multiple of the granularity
            size_t reserve_size = size - avail;
            reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);

            GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);

            // allocate more physical memory
            CUmemAllocationProp prop = {};
            prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
            prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
            prop.location.id = device;
            CUmemGenericAllocationHandle handle;
            CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));

            // reserve virtual address space (if not already reserved)
            if (pool_addr == 0) {
                CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
            }

            // map at the end of the pool
459
460
461
462
463
            CUdeviceptr start_ptr = (CUdeviceptr)((char *)(pool_addr) + pool_size);
            CU_CHECK(cuMemMap(start_ptr, reserve_size, 0, handle, 0));
#if defined(GGML_USE_HIP)
            mappings.push_back({start_ptr, reserve_size});
#endif
464
465
466
467
468
469
470
471
472

            // the memory allocation handle is no longer needed after mapping
            CU_CHECK(cuMemRelease(handle));

            // set access
            CUmemAccessDesc access = {};
            access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
            access.location.id = device;
            access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
473
            CU_CHECK(cuMemSetAccess((CUdeviceptr)((char *)(pool_addr) + pool_size), reserve_size, &access, 1));
474
475
476
477
478
479
480
481
482
483
484

            // add to the pool
            pool_size += reserve_size;

            //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
            //       device, (unsigned long long) (pool_size/1024/1024),
            //       (unsigned long long) (reserve_size/1024/1024));
        }

        GGML_ASSERT(pool_addr != 0);

485
        void * ptr = (void *) ((CUdeviceptr)((char *)(pool_addr) + pool_used));
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        *actual_size = size;
        pool_used += size;

#ifdef DEBUG_CUDA_MALLOC
        printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
#endif

        return ptr;
    }

    void free(void * ptr, size_t size) override {
#ifdef DEBUG_CUDA_MALLOC
        printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
#endif

        pool_used -= size;

        // all deallocations must be in reverse order of the allocations
504
        GGML_ASSERT(ptr == (void *) ((char *)(pool_addr) + pool_used));
505
506
    }
};
507
#endif // defined(GGML_USE_VMM)
508
509

std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
510
#if defined(GGML_USE_VMM)
511
512
513
    if (ggml_cuda_info().devices[device].vmm) {
        return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
    }
514
#endif // defined(GGML_USE_VMM)
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
}

// cuda buffer

struct ggml_backend_cuda_buffer_context {
    int device;
    void * dev_ptr = nullptr;
    std::string name;

    ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
        device(device), dev_ptr(dev_ptr),
        name(GGML_CUDA_NAME + std::to_string(device)) {
    }

    ~ggml_backend_cuda_buffer_context() {
        CUDA_CHECK(cudaFree(dev_ptr));
    }
};

535
static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
536
537
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
    delete ctx;
Michael Yang's avatar
Michael Yang committed
538
    delete buffer;
539
540
}

541
542
543
544
545
static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
    return buffer->iface.free_buffer == ggml_backend_cuda_buffer_free_buffer;
}

static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
546
547
548
549
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
    return ctx->dev_ptr;
}

550
static enum ggml_status ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
551
552
553
554
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;

    if (tensor->view_src != NULL) {
        assert(tensor->view_src->buffer->buft == buffer->buft);
555
        return GGML_STATUS_SUCCESS;
556
557
558
559
    }

    if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
        // initialize padding to 0 to avoid possible NaN values
560
561
        const size_t original_size = ggml_nbytes(tensor);
        const size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
562
563
564
565
566
567

        if (padded_size > original_size) {
            ggml_cuda_set_device(ctx->device);
            CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
        }
    }
568
    return GGML_STATUS_SUCCESS;
569
570
}

571
static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
572
573
574
575
576
577
578
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;

    ggml_cuda_set_device(ctx->device);
    CUDA_CHECK(cudaMemsetAsync((char *)tensor->data + offset, value, size, cudaStreamPerThread));
    CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}

579
static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
580
581
582
583
584
585
586
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;

    ggml_cuda_set_device(ctx->device);
    CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
    CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}

587
static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
588
589
590
591
592
593
594
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;

    ggml_cuda_set_device(ctx->device);
    CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
    CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}

595
static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    if (ggml_backend_buffer_is_cuda(src->buffer)) {
        ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
        ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
        if (src_ctx->device == dst_ctx->device) {
            CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
        } else {
#ifdef GGML_CUDA_NO_PEER_COPY
            return false;
#else
            CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
#endif
        }
        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
        return true;
    }
    return false;

    GGML_UNUSED(buffer);
}

616
static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
617
618
619
620
621
622
623
624
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;

    ggml_cuda_set_device(ctx->device);
    CUDA_CHECK(cudaDeviceSynchronize());
    CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
    CUDA_CHECK(cudaDeviceSynchronize());
}

625
static const ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
626
627
628
    /* .free_buffer     = */ ggml_backend_cuda_buffer_free_buffer,
    /* .get_base        = */ ggml_backend_cuda_buffer_get_base,
    /* .init_tensor     = */ ggml_backend_cuda_buffer_init_tensor,
629
    /* .memset_tensor   = */ ggml_backend_cuda_buffer_memset_tensor,
630
631
632
633
634
635
636
637
638
639
640
641
642
    /* .set_tensor      = */ ggml_backend_cuda_buffer_set_tensor,
    /* .get_tensor      = */ ggml_backend_cuda_buffer_get_tensor,
    /* .cpy_tensor      = */ ggml_backend_cuda_buffer_cpy_tensor,
    /* .clear           = */ ggml_backend_cuda_buffer_clear,
    /* .reset           = */ NULL,
};

// cuda buffer type
struct ggml_backend_cuda_buffer_type_context {
    int device;
    std::string name;
};

643
static const char * ggml_backend_cuda_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
644
645
646
647
648
649
    ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;

    return ctx->name.c_str();
}

static bool ggml_backend_buft_is_cuda(ggml_backend_buffer_type_t buft) {
650
    return buft->iface.get_name == ggml_backend_cuda_buffer_type_get_name;
651
652
}

653
static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
654
655
656
657
658
659
660
661
    ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;

    ggml_cuda_set_device(buft_ctx->device);

    void * dev_ptr;
    cudaError_t err = ggml_cuda_device_malloc(&dev_ptr, size, buft_ctx->device);
    if (err != cudaSuccess) {
        // clear the error
662
        (void)cudaGetLastError();
663
        GGML_LOG_ERROR("%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size / 1024.0 / 1024.0, buft_ctx->device, cudaGetErrorString(err));
664
665
666
667
668
669
670
671
        return nullptr;
    }

    ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);

    return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
}

672
static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
673
674
675
676
677
    return 128;

    GGML_UNUSED(buft);
}

678
static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
679
680
681
682
683
    size_t size = ggml_nbytes(tensor);
    int64_t ne0 = tensor->ne[0];

    if (ggml_is_quantized(tensor->type)) {
        if (ne0 % MATRIX_ROW_PADDING != 0) {
684
            GGML_ASSERT(tensor->nb[0] == ggml_element_size(tensor));
685
686
687
688
689
690
691
692
693
            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
        }
    }

    return size;

    GGML_UNUSED(buft);
}

694
695
static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
    /* .get_name         = */ ggml_backend_cuda_buffer_type_get_name,
696
697
698
699
700
701
702
    /* .alloc_buffer     = */ ggml_backend_cuda_buffer_type_alloc_buffer,
    /* .get_alignment    = */ ggml_backend_cuda_buffer_type_get_alignment,
    /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
    /* .get_alloc_size   = */ ggml_backend_cuda_buffer_type_get_alloc_size,
    /* .is_host          = */ NULL,
};

703
ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
704
705
706
707
708
709
710
711
712
713
714
715
    static std::mutex mutex;
    std::lock_guard<std::mutex> lock(mutex);

    if (device >= ggml_backend_cuda_get_device_count()) {
        return nullptr;
    }

    static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];

    static bool ggml_backend_cuda_buffer_type_initialized = false;

    if (!ggml_backend_cuda_buffer_type_initialized) {
716
        for (int i = 0; i < ggml_backend_cuda_get_device_count(); i++) {
717
718
            ggml_backend_cuda_buffer_types[i] = {
                /* .iface    = */ ggml_backend_cuda_buffer_type_interface,
719
                /* .device   = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), i),
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
                /* .context  = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
            };
        }
        ggml_backend_cuda_buffer_type_initialized = true;
    }

    return &ggml_backend_cuda_buffer_types[device];
}

// cuda split buffer

static int64_t get_row_rounding(const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
    int64_t row_rounding = 0;
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
            continue;
        }

        const int cc = ggml_cuda_info().devices[id].cc;
        row_rounding = std::max(row_rounding, (int64_t)get_mmq_y_host(cc));
    }
    return row_rounding;
}

static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
    const int64_t nrows = ggml_nrows(tensor);
    const int64_t rounding = get_row_rounding(tensor_split);

    *row_low = id == 0 ? 0 : nrows*tensor_split[id];
    *row_low -= *row_low % rounding;

    if (id == ggml_backend_cuda_get_device_count() - 1) {
        *row_high = nrows;
    } else {
        *row_high = nrows*tensor_split[id + 1];
        *row_high -= *row_high % rounding;
    }
}

static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");

    return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
}

struct ggml_backend_cuda_split_buffer_type_context {
766
    int main_device;
767
    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
768
    std::string name;
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
};

struct ggml_backend_cuda_split_buffer_context {
    ~ggml_backend_cuda_split_buffer_context() {
        for (ggml_tensor_extra_gpu * extra : tensor_extras) {
            for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) {
                for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
                    if (extra->events[id][is] != nullptr) {
                        CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
                    }
                }
                if (extra->data_device[id] != nullptr) {
                    CUDA_CHECK(cudaFree(extra->data_device[id]));
                }
            }
            delete extra;
        }
    }

    std::vector<ggml_tensor_extra_gpu *> tensor_extras;
};


792
static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
793
794
    ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
    delete ctx;
795
    delete buffer;
796
797
}

798
static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
799
800
801
802
803
804
    // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
    return (void *)0x1000;

    GGML_UNUSED(buffer);
}

805
static enum ggml_status ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
806
    GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
807
    GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

    ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;

    const int64_t ne0 = tensor->ne[0];

    ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
    ctx->tensor_extras.push_back(extra);

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        int64_t row_low, row_high;
        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);

        int64_t nrows_split = row_high - row_low;
        if (nrows_split == 0) {
            continue;
        }

        size_t size = ggml_nbytes_split(tensor, nrows_split);
        const size_t original_size = size;

        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
        if (ne0 % MATRIX_ROW_PADDING != 0) {
            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
        }

        // FIXME: do not crash if cudaMalloc fails
        // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
        ggml_cuda_set_device(id);
        char * buf;
        CUDA_CHECK(ggml_cuda_device_malloc((void**)&buf, size, id));

        // set padding to 0 to avoid possible NaN values
        if (size > original_size) {
            CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
        }

        extra->data_device[id] = buf;

        for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
            CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
        }
    }
    tensor->extra = extra;
852
    return GGML_STATUS_SUCCESS;
853
854
}

855
static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
856
857
858
    // split tensors must always be set in their entirety at once
    GGML_ASSERT(offset == 0);
    GGML_ASSERT(size == ggml_nbytes(tensor));
859
    GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893

    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;

    const int64_t ne0 = tensor->ne[0];
    const size_t nb1 = tensor->nb[1];
    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        int64_t row_low, row_high;
        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);

        int64_t nrows_split = row_high - row_low;
        if (nrows_split == 0) {
            continue;
        }

        const size_t offset_split = row_low*nb1;
        size_t size = ggml_nbytes_split(tensor, nrows_split);
        const size_t original_size = size;

        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
        if (ne0 % MATRIX_ROW_PADDING != 0) {
            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
        }

        const char * buf_host = (const char *)data + offset_split;
        CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
    }

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
    }
}

894
static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
895
896
897
    // split tensors must always be set in their entirety at once
    GGML_ASSERT(offset == 0);
    GGML_ASSERT(size == ggml_nbytes(tensor));
898
    GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;

    const int64_t ne0 = tensor->ne[0];
    const size_t nb1 = tensor->nb[1];
    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        int64_t row_low, row_high;
        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);

        int64_t nrows_split = row_high - row_low;
        if (nrows_split == 0) {
            continue;
        }

        const size_t offset_split = row_low*nb1;
        size_t size = ggml_nbytes_split(tensor, nrows_split);
        const size_t original_size = size;

        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
        if (ne0 % MATRIX_ROW_PADDING != 0) {
            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
        }

        char * buf_host = (char *)data + offset_split;
        CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
    }

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
    }
}

933
static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
934
935
936
937
    GGML_UNUSED(buffer);
    GGML_UNUSED(value);
}

938
static const ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
939
940
941
    /* .free_buffer     = */ ggml_backend_cuda_split_buffer_free_buffer,
    /* .get_base        = */ ggml_backend_cuda_split_buffer_get_base,
    /* .init_tensor     = */ ggml_backend_cuda_split_buffer_init_tensor,
942
    /* .memset_tensor   = */ NULL,
943
944
945
946
947
948
949
950
951
    /* .set_tensor      = */ ggml_backend_cuda_split_buffer_set_tensor,
    /* .get_tensor      = */ ggml_backend_cuda_split_buffer_get_tensor,
    /* .cpy_tensor      = */ NULL,
    /* .clear           = */ ggml_backend_cuda_split_buffer_clear,
    /* .reset           = */ NULL,
};

// cuda split buffer type

952
953
static const char * ggml_backend_cuda_split_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
    ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
954

955
    return ctx->name.c_str();
956
957
958
}

static bool ggml_backend_buft_is_cuda_split(ggml_backend_buffer_type_t buft) {
959
    return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_get_name;
960
961
}

962
static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
963
964
965
966
967
968
969
970
971
    // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
    // instead, we allocate them for each tensor separately in init_tensor
    // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
    // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
    ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();

    return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
}

972
static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
973
974
975
976
977
    return 128;

    GGML_UNUSED(buft);
}

978
static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
979
    ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
980
    GGML_ASSERT(ggml_is_contiguous(tensor) && "split buffers only supported for contiguous tensors");
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005

    size_t total_size = 0;

    const int64_t ne0 = tensor->ne[0];

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        int64_t row_low, row_high;
        get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);

        int64_t nrows_split = row_high - row_low;
        if (nrows_split == 0) {
            continue;
        }

        total_size += ggml_nbytes_split(tensor, nrows_split);

        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
        if (ne0 % MATRIX_ROW_PADDING != 0) {
            total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
        }
    }

    return total_size;
}

1006
static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
1007
1008
1009
1010
1011
    return false;

    GGML_UNUSED(buft);
}

1012
1013
static const ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
    /* .get_name         = */ ggml_backend_cuda_split_buffer_type_get_name,
1014
1015
1016
1017
1018
1019
1020
    /* .alloc_buffer     = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
    /* .get_alignment    = */ ggml_backend_cuda_split_buffer_type_get_alignment,
    /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
    /* .get_alloc_size   = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
    /* .is_host          = */ ggml_backend_cuda_split_buffer_type_is_host,
};

1021
ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split) {
1022
1023
1024
    static std::mutex mutex;
    std::lock_guard<std::mutex> lock(mutex);

1025
    static std::map<std::pair<int, std::array<float, GGML_CUDA_MAX_DEVICES>>, struct ggml_backend_buffer_type> buft_map;
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};

    bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
    if (all_zero) {
        tensor_split_arr = ggml_cuda_info().default_tensor_split;
    } else {
        float split_sum = 0.0f;
        for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
            tensor_split_arr[i] = split_sum;
            split_sum += tensor_split[i];
        }
        for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
            tensor_split_arr[i] /= split_sum;
        }
    }

1043
    auto it = buft_map.find({main_device, tensor_split_arr});
1044
1045
1046
    if (it != buft_map.end()) {
        return &it->second;
    }
1047
1048
1049
1050
1051
    auto * ctx = new ggml_backend_cuda_split_buffer_type_context{
        main_device,
        tensor_split_arr,
        GGML_CUDA_NAME + std::to_string(main_device) + "_Split",
    };
1052
1053
1054

    struct ggml_backend_buffer_type buft {
        /* .iface   = */ ggml_backend_cuda_split_buffer_type_interface,
1055
1056
        /* .device  = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), main_device),
        /* .context = */ ctx,
1057
1058
    };

1059
    auto result = buft_map.emplace(std::make_pair(main_device, tensor_split_arr), buft);
1060
1061
1062
1063
1064
    return &result.first->second;
}

// host buffer type

1065
static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
1066
1067
1068
1069
1070
    return GGML_CUDA_NAME "_Host";

    GGML_UNUSED(buft);
}

1071
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
1072
    CUDA_CHECK(cudaFreeHost(buffer->context));
1073
    delete buffer;
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
}

static void * ggml_cuda_host_malloc(size_t size) {
    if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
        return nullptr;
    }

    void * ptr = nullptr;
    cudaError_t err = cudaMallocHost((void **) &ptr, size);
    if (err != cudaSuccess) {
        // clear the error
1085
        (void)cudaGetLastError();
1086
        GGML_LOG_DEBUG("%s: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
1087
1088
1089
1090
1091
1092
1093
                           size / 1024.0 / 1024.0, cudaGetErrorString(err));
        return nullptr;
    }

    return ptr;
}

1094
static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
    void * ptr = ggml_cuda_host_malloc(size);

    if (ptr == nullptr) {
        // fallback to cpu buffer
        return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
    }

    ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
    buffer->buft = buft;
    buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;

    return buffer;
}

1109
ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
1110
1111
1112
1113
1114
1115
1116
1117
1118
    static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
        /* .iface    = */ {
            /* .get_name         = */ ggml_backend_cuda_host_buffer_type_name,
            /* .alloc_buffer     = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
            /* .get_alignment    = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
            /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
            /* .get_alloc_size   = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
            /* .is_host          = */ ggml_backend_cpu_buffer_type()->iface.is_host,
        },
1119
        /* .device   = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), 0),
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
        /* .context  = */ nullptr,
    };

    return &ggml_backend_cuda_buffer_type_host;
}

//static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
//    return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
//}

/// kernels

typedef void (*ggml_cuda_op_mul_mat_t)(
    ggml_backend_cuda_context & ctx,
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
    const int64_t src1_padded_row_size, cudaStream_t stream);

#ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
#define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
#endif // GGML_CUDA_PEER_MAX_BATCH_SIZE

#define MUL_MAT_SRC1_COL_STRIDE 128

static cudaError_t ggml_cuda_cpy_tensor_2d(
    void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {

    GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
1148
1149
    const char * src_ptr = (const char *) src->data;
    char       * dst_ptr = (char       *) dst;
1150
1151
1152
1153
1154
1155
1156
1157
1158

    const int64_t ne0 = src->ne[0];
    const int64_t nb0 = src->nb[0];
    const int64_t nb1 = src->nb[1];
    const int64_t nb2 = src->nb[2];
    const int64_t nb3 = src->nb[3];
    const enum ggml_type type = src->type;
    const int64_t ts = ggml_type_size(type);
    const int64_t bs = ggml_blck_size(type);
1159
    const int64_t i1_diff = i1_high - i1_low;
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202

    const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
    if (nb0 == ts && nb1 == ts*ne0/bs) {
        return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream);
    } else if (nb0 == ts) {
        return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream);
    } else {
        for (int64_t i1 = 0; i1 < i1_diff; i1++) {
            const void * rx = (const void *) ((const char *) x + i1*nb1);
            void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
            // pretend the row is a matrix with cols=1
            cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream);
            if (r != cudaSuccess) {
                return r;
            }
        }
        return cudaSuccess;
    }
}

static void ggml_cuda_op_mul_mat_cublas(
    ggml_backend_cuda_context & ctx,
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
    const int64_t src1_padded_row_size, cudaStream_t stream) {

    GGML_ASSERT(src0_dd_i  != nullptr);
    GGML_ASSERT(src1_ddf_i != nullptr);
    GGML_ASSERT(dst_dd_i   != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t ne10 = src1->ne[0];

    const int64_t ne0 = dst->ne[0];

    const int64_t row_diff = row_high - row_low;

    int id = ggml_cuda_get_device();

    // the main device has a larger memory buffer to hold the results from all GPUs
    // ldc == nrows of the matrix that cuBLAS writes into
    int64_t ldc = id == ctx.device ? ne0 : row_diff;

1203
    const int cc = ggml_cuda_info().devices[id].cc;
1204

1205
1206
    const bool use_fp16 = (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT;

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
    if (src0->type == GGML_TYPE_BF16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) {
        ggml_cuda_pool_alloc<nv_bfloat16> src1_as_bf16(ctx.pool(id));
        if (src1->type != GGML_TYPE_BF16) {
            const to_bf16_cuda_t to_bf16_cuda = ggml_get_to_bf16_cuda(src1->type);
            GGML_ASSERT(to_bf16_cuda != nullptr);
            size_t ne = src1_ncols*ne10;
            src1_as_bf16.alloc(ne);
            to_bf16_cuda(src1_ddf_i, src1_as_bf16.get(), ne, stream);
        }
        const nv_bfloat16 * src1_ptr = src1->type == GGML_TYPE_BF16 ? (const nv_bfloat16 *) src1_ddf_i : src1_as_bf16.get();
        const nv_bfloat16 * src0_ptr = (const nv_bfloat16 *)src0_dd_i;
        ggml_cuda_pool_alloc<nv_bfloat16> dst_bf16(ctx.pool(id), row_diff*src1_ncols);

        const float alpha_f32 = 1.0f;
        const float beta_f32  = 0.0f;

        CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
        CUBLAS_CHECK(
            cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
                    row_diff, src1_ncols, ne10,
                    &alpha_f32,  src0_ptr,       CUDA_R_16BF, ne00,
                                 src1_ptr,       CUDA_R_16BF, ne10,
                    &beta_f32,   dst_bf16.get(), CUDA_R_16BF, ldc,
                    CUBLAS_COMPUTE_32F,
                    CUBLAS_GEMM_DEFAULT_TENSOR_OP));

        const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_BF16);
        to_fp32_cuda(dst_bf16.get(), dst_dd_i, row_diff*src1_ncols, stream);
    } else if (((GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_VOLTA) || GGML_CUDA_CC_IS_AMD(cc)) && use_fp16) {
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
        // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
        ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
        if (src0->type != GGML_TYPE_F16) {
            const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
            GGML_ASSERT(to_fp16_cuda != nullptr);
            size_t ne = row_diff*ne00;
            src0_as_f16.alloc(ne);
            to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
        }
        const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();

        ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id));
        if (src1->type != GGML_TYPE_F16) {
            const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
            GGML_ASSERT(to_fp16_cuda != nullptr);
            size_t ne = src1_ncols*ne10;
            src1_as_f16.alloc(ne);
            to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
        }
        const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();

1257
        CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
1258

1259
        if (GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA4(cc)) {
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
            const float alpha = 1.0f;
            const float beta = 0.0f;
            CUBLAS_CHECK(
                cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
                        row_diff, src1_ncols, ne10,
                        &alpha, src0_ptr,  CUDA_R_16F, ne00,
                                src1_ptr,  CUDA_R_16F, ne10,
                        &beta,   dst_dd_i, CUDA_R_32F, ldc,
                        CUBLAS_COMPUTE_32F,
                        CUBLAS_GEMM_DEFAULT_TENSOR_OP));
        } else {
            ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
1272

1273
1274
            const half alpha_f16 = 1.0f;
            const half beta_f16 = 0.0f;
1275

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
            CUBLAS_CHECK(
                cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
                        row_diff, src1_ncols, ne10,
                        &alpha_f16, src0_ptr,      CUDA_R_16F, ne00,
                                    src1_ptr,      CUDA_R_16F, ne10,
                        &beta_f16,  dst_f16.get(), CUDA_R_16F, ldc,
                        CUBLAS_COMPUTE_16F,
                        CUBLAS_GEMM_DEFAULT_TENSOR_OP));

            const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
            to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
        }
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
    } else {
        ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
        ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));

        if (src0->type != GGML_TYPE_F32) {
            const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
            GGML_ASSERT(to_fp32_cuda != nullptr);
            src0_ddq_as_f32.alloc(row_diff*ne00);
            to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
        }
        if (src1->type != GGML_TYPE_F32) {
            const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
            GGML_ASSERT(to_fp32_cuda != nullptr);
            src1_ddq_as_f32.alloc(src1_ncols*ne10);
            to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
        }

        const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
        const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();

        const float alpha = 1.0f;
        const float beta = 0.0f;

        CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
        CUBLAS_CHECK(
            cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
                    row_diff, src1_ncols, ne10,
                    &alpha, src0_ddf_i,  ne00,
                            src1_ddf1_i, ne10,
                    &beta,  dst_dd_i,    ldc));
    }

    GGML_UNUSED(dst);
    GGML_UNUSED(src1_ddq_i);
    GGML_UNUSED(src1_padded_row_size);
}

static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
    static bool peer_access_enabled = false;

    const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;

    if (peer_access_enabled == enable_peer_access) {
        return;
    }

#ifdef NDEBUG
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        ggml_cuda_set_device(id);
        CUDA_CHECK(cudaDeviceSynchronize());
    }

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        ggml_cuda_set_device(id);

        for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) {
            if (id == id_other) {
                continue;
            }
            if (id != main_device && id_other != main_device) {
                continue;
            }

            int can_access_peer;
            CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
            if (can_access_peer) {
                if (enable_peer_access) {
                    cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
                    if (err != cudaErrorPeerAccessAlreadyEnabled) {
                        CUDA_CHECK(err);
1358
1359
                    } else {
                        // reset the error
1360
                        (void)cudaGetLastError();
1361
1362
1363
1364
1365
                    }
                } else {
                    cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
                    if (err != cudaErrorPeerAccessNotEnabled) {
                        CUDA_CHECK(err);
1366
1367
                    } else {
                        // reset the error
1368
                        (void)cudaGetLastError();
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
                    }
                }
            }
        }
    }

    ggml_cuda_set_device(main_device);
#endif // NDEBUG

    peer_access_enabled = enable_peer_access;

    GGML_UNUSED(main_device);
}

static cudaError_t ggml_cuda_Memcpy2DPeerAsync(
    void * dst, int dstDevice, size_t dpitch, void * src, int srcDevice, size_t spitch, size_t width, size_t height, cudaStream_t stream) {

1386
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
    // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
    cudaMemcpy3DPeerParms p = {};
    p.dstDevice = dstDevice;
    p.dstPtr = make_cudaPitchedPtr(dst, dpitch, dpitch, height);
    p.srcDevice = srcDevice;
    p.srcPtr = make_cudaPitchedPtr(src, spitch, spitch, height);
    p.extent = make_cudaExtent(width, height, 1);
    return cudaMemcpy3DPeerAsync(&p, stream);
#else
    // HIP does not support cudaMemcpy3DPeerAsync or vmm pools
    GGML_UNUSED(dstDevice);
    GGML_UNUSED(srcDevice);
    return cudaMemcpy2DAsync(dst, dpitch, src, spitch, width, height, cudaMemcpyDeviceToDevice, stream);
1400
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
}

static void ggml_cuda_op_mul_mat(
    ggml_backend_cuda_context & ctx,
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
    quantize_cuda_t quantize_src1) {

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];
    const int64_t ne03 = src0->ne[3];

    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];
    const int64_t ne12 = src1->ne[2];
    const int64_t ne13 = src1->ne[3];
    const int64_t nrows1 = ggml_nrows(src1);

    const int64_t ne0 = dst->ne[0];
    const int64_t ne1 = dst->ne[1];

1422
1423
1424
1425
1426
    // const int64_t nb10 = src1->nb[0];
    const int64_t nb11 = src1->nb[1];
    const int64_t nb12 = src1->nb[2];
    const int64_t nb13 = src1->nb[3];

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
    const int64_t nb2 = dst->nb[2];
    const int64_t nb3 = dst->nb[3];

    GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
    GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
    ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
    ggml_backend_cuda_buffer_context * dst_ctx  = (ggml_backend_cuda_buffer_context *) dst->buffer->context;

    GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));

1437
1438
    GGML_ASSERT(ne12 % ne02 == 0);
    GGML_ASSERT(ne13 % ne03 == 0);
1439
1440

    const int64_t i02_divisor = ne12 / ne02;
1441
    const int64_t i03_divisor = ne13 / ne03;
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452

    const size_t src0_ts = ggml_type_size(src0->type);
    const size_t src0_bs = ggml_blck_size(src0->type);
    const size_t q8_1_ts = sizeof(block_q8_1);
    const size_t q8_1_bs = QK8_1;

    const bool src0_is_contiguous = ggml_is_contiguous(src0);
    const bool src1_is_contiguous = ggml_is_contiguous(src1);

    const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);

1453
    const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
1454
1455
1456
    GGML_ASSERT(!(split && ne02 > 1));
    GGML_ASSERT(!(split && ne03 > 1));
    GGML_ASSERT(!(split && ne02 < ne12));
1457
    GGML_ASSERT(!(split && ne03 < ne13));
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532

    ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr;


    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
    if (split) {
        ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
        tensor_split = buft_ctx->tensor_split;
    }

    struct dev_data {
        int cc;

        ggml_cuda_pool_alloc<char>   src0_dd_alloc;
        ggml_cuda_pool_alloc<float> src1_ddf_alloc;
        ggml_cuda_pool_alloc<char>  src1_ddq_alloc;
        ggml_cuda_pool_alloc<float>   dst_dd_alloc;

        char  *  src0_dd = nullptr;
        float * src1_ddf = nullptr; // float
        char  * src1_ddq = nullptr; // q8_1
        float *   dst_dd = nullptr;

        int64_t  row_low;
        int64_t row_high;
    };

    dev_data dev[GGML_CUDA_MAX_DEVICES];

    int used_devices = 0;

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        dev[id].cc = ggml_cuda_info().devices[id].cc;

        // by default, use all rows
        dev[id].row_low  = 0;
        dev[id].row_high = ne01;

        // for multi GPU, get the row boundaries from tensor split
        // and round to mul_mat_q tile sizes
        if (split) {
            const int64_t rounding = get_row_rounding(tensor_split);

            if (id != 0) {
                dev[id].row_low  = ne01*tensor_split[id];
                if (dev[id].row_low < ne01) {
                    dev[id].row_low -= dev[id].row_low % rounding;
                }
            }

            if (id != ggml_backend_cuda_get_device_count() - 1) {
                dev[id].row_high  = ne01*tensor_split[id + 1];
                if (dev[id].row_high < ne01) {
                    dev[id].row_high -= dev[id].row_high % rounding;
                }
            }
        }
    }

    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
        if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
            continue;
        }

        used_devices++;

        const bool src1_on_device = id == src1_ctx->device;
        const bool  dst_on_device = id == dst_ctx->device;

        ggml_cuda_set_device(id);
        cudaStream_t stream = ctx.stream(id, 0);

        if (src0_is_contiguous) {
            dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
        } else {
1533
1534
1535
1536
1537
1538
1539
1540
1541
            // If src0 is not contiguous it will be copied to a temporary buffer.
            // This buffer needs to be cleared entirely because multiple regions will function as padding.
            const size_t nbytes_data    = ggml_nbytes(src0);
            const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
            dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), nbytes_data + nbytes_padding);
            CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd, 0, nbytes_data + nbytes_padding, stream));
        }

        // If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared:
1542
        if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
1543
1544
            GGML_ASSERT(ggml_is_contiguously_allocated(src0));
            GGML_ASSERT(!src0->view_src);
1545
1546
1547
            const size_t nbytes_data    = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
            const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
            CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
        }

        if (src1_on_device && src1_is_contiguous) {
            dev[id].src1_ddf = (float *) src1->data;
        } else {
            dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1));
        }

        if (quantize_src1) {
            size_t src_1_ddq_size = nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs;
            if (quantize_src1 == quantize_mmq_q8_1_cuda) {
                src_1_ddq_size += get_mmq_x_max_host(dev[id].cc)*sizeof(block_q8_1_mmq);
            }
            dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), src_1_ddq_size);

            if (src1_on_device && src1_is_contiguous) {
1564
1565
1566
1567
                quantize_src1(
                    dev[id].src1_ddf, nullptr, dev[id].src1_ddq, src0->type, ne10,
                    nb11/sizeof(float), nb12/sizeof(float), nb13/sizeof(float),
                    src1_padded_col_size, ne11, ne12, ne13, stream);
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
                CUDA_CHECK(cudaGetLastError());
            }
        }

        if (dst_on_device) {
            dev[id].dst_dd = (float *) dst->data;
        } else {
            const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
            dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf);
        }
    }

    // if multiple devices are used they need to wait for the main device
    // here an event is recorded that signals that the main device has finished calculating the input data
    if (split && used_devices > 1) {
        ggml_cuda_set_device(ctx.device);
        CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream()));
    }

    const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
    for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
        const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0;
        const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;

        for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
            if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
                continue;
            }

            const bool src1_on_device = id == src1_ctx->device;
            const bool  dst_on_device = id == dst_ctx->device;
            const int64_t row_diff = dev[id].row_high - dev[id].row_low;

            ggml_cuda_set_device(id);
            cudaStream_t stream = ctx.stream(id, is);

            // wait for main GPU data if necessary
            if (split && (id != ctx.device || is != 0)) {
                CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0));
            }

            for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
                const int64_t i03 = i0 / ne12;
                const int64_t i02 = i0 % ne12;

                size_t src1_ddq_i_offset = i0*ne11 * src1_padded_col_size*q8_1_ts/q8_1_bs;
                if (quantize_src1 == quantize_mmq_q8_1_cuda) {
                    src1_ddq_i_offset += src1_col_0 * sizeof(block_q8_1_mmq);
                } else {
                    src1_ddq_i_offset += src1_col_0 * src1_padded_col_size*q8_1_ts/q8_1_bs;
                }

                // for split tensors the data begins at i0 == i0_offset_low
1621
1622
                const size_t nbytes_src0_matrix = ne01*ne00*src0_ts / src0_bs;
                char  *  src0_dd_i =  dev[id].src0_dd + ((i03/i03_divisor)*ne02 + (i02/i02_divisor)) * nbytes_src0_matrix;
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
                float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
                char  * src1_ddq_i = dev[id].src1_ddq +  src1_ddq_i_offset;
                float *   dst_dd_i =   dev[id].dst_dd + (i0*ne1  + src1_col_0) * (dst_on_device ? ne0 : row_diff);

                // the main device memory buffer can be on VRAM scratch, with space for all partial results
                // in that case an offset on dst_ddf_i is needed
                if (id == ctx.device) {
                    dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
                }

                // copy src0, src1 to device if necessary
                if (src1_is_contiguous) {
                    if (id != ctx.device) {
                        if (quantize_src1) {
                            char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
                            if (quantize_src1 == quantize_mmq_q8_1_cuda) {
                                const size_t pitch = ne11*sizeof(block_q8_1_mmq);
                                const size_t width = src1_ncols*sizeof(block_q8_1_mmq);
                                const size_t height = src1_padded_col_size/(4*QK8_1);
                                CUDA_CHECK(ggml_cuda_Memcpy2DPeerAsync(src1_ddq_i, id, pitch, src1_ddq_i_source, ctx.device, pitch, width, height, stream));
                            } else {
                                CUDA_CHECK(cudaMemcpyPeerAsync(
                                    src1_ddq_i, id, src1_ddq_i_source, ctx.device, src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
                            }
                        } else {
                            float * src1_ddf_i_source = (float *) src1->data;
                            src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
                            CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device,
                                                            src1_ncols*ne10*sizeof(float), stream));
                        }
                    }
                } else if (src1_on_device && !src1_is_contiguous) {
                    CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
                                src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
                } else {
                    GGML_ABORT("fatal error");
                }

                if (quantize_src1 && !src1_is_contiguous) {
1662
1663
1664
                    quantize_src1(
                        src1_ddf_i, nullptr, src1_ddq_i, src0->type, ne10, ne10, ne11*ne10, ne12*ne11*ne10,
                        src1_padded_col_size, src1_ncols, 1, 1, stream);
1665
1666
1667
                    CUDA_CHECK(cudaGetLastError());
                }

1668
1669
1670
                if (src1_col_0 == 0 && !src0_is_contiguous && i03 % i03_divisor == 0 && i02 % i02_divisor == 0) {
                    CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
                        src0_dd_i, src0, i03/i03_divisor, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
                }

                // do the computation
                op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
                    dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
                CUDA_CHECK(cudaGetLastError());

                // copy dst to host or other device if necessary
                if (!dst_on_device) {
                    void * dst_off_device = dst->data;
                    if (split) {
                        // src0 = weight matrix is saved as a transposed matrix for better memory layout.
                        // dst is NOT transposed.
                        // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
                        // Instead they need to be copied to the correct slice in ne0 = dst row index.
                        // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
                        GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
                        dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
                        CUDA_CHECK(ggml_cuda_Memcpy2DPeerAsync(
                            dhf_dst_i, ctx.device, ne0*sizeof(float), dst_dd_i, id, row_diff*sizeof(float), row_diff*sizeof(float), src1_ncols, stream));
                    } else {
                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
                        GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
                        dhf_dst_i += src1_col_0*ne0;
                        CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
                    }
                }

                // add event for the main device to wait on until other device is done
                if (split && (id != ctx.device || is != 0)) {
                    CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
                }
            }
        }
    }

    // main device waits for all other devices to be finished
    if (split && ggml_backend_cuda_get_device_count() > 1) {
        int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
        is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS;

        ggml_cuda_set_device(ctx.device);
        for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
            if (dev[id].row_low == dev[id].row_high) {
                continue;
            }
            for (int64_t is = 0; is < is_max; ++is) {
                CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0));
            }
        }
    }
}

static __global__ void k_compute_batched_ptrs(
        const half * src0_as_f16, const half * src1_as_f16, char * dst,
        const void ** ptrs_src, void ** ptrs_dst,
        int64_t ne12, int64_t ne13,
        int64_t ne23,
        size_t  nb02, size_t  nb03,
        size_t  nb12, size_t  nb13,
        size_t  nbd2, size_t  nbd3,
        int64_t r2,   int64_t r3) {
1734
1735
    const int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
    const int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
1736
1737
1738
1739
1740

    if (i13 >= ne13 || i12 >= ne12) {
        return;
    }

1741
1742
    const int64_t i03 = i13 / r3;
    const int64_t i02 = i12 / r2;
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755

    ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
    ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
    ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)         dst + i12*nbd2 + i13*nbd3;
}

static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(!ggml_is_transposed(src0));
    GGML_ASSERT(!ggml_is_transposed(src1));

    GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
    GGML_ASSERT(src0->type == GGML_TYPE_F16);

1756
1757
1758
1759
    // Byte offsets and tensor dimensions are currently used in an inconsistent way for dst.
    // As long as dst is contiguous this does not matter though.
    GGML_ASSERT(ggml_is_contiguous(dst));

1760
1761
1762
1763
1764
1765
1766
1767
    GGML_TENSOR_BINARY_OP_LOCALS

    const int64_t ne_dst = ggml_nelements(dst);

    cudaStream_t main_stream = ctx.stream();

    CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));

1768
1769
    const half * src0_f16 = (const half *) src0->data;
    float * dst_ddf = (float *) dst->data;
1770

1771
1772
1773
1774
1775
1776
    const half * src1_f16 = (const half *) src1->data;
    const size_t ts_src1 = ggml_type_size(src1->type);
    GGML_ASSERT(nb10 == ts_src1);
    int64_t s11 = nb11 / ts_src1;
    int64_t s12 = nb12 / ts_src1;
    int64_t s13 = nb13 / ts_src1;
1777
    ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
1778
1779

    // convert src1 to fp16
1780
    if (src1->type != GGML_TYPE_F16) {
1781
        const to_fp16_nc_cuda_t to_fp16_cuda = ggml_get_to_fp16_nc_cuda(src1->type);
1782
1783
1784
        const int64_t ne_src1 = ggml_nelements(src1);
        src1_f16_alloc.alloc(ne_src1);
        GGML_ASSERT(to_fp16_cuda != nullptr);
1785
1786
1787
1788
1789
1790
1791

        to_fp16_cuda(src1_f16, src1_f16_alloc.get(), ne10, ne11, ne12, ne13, s11, s12, s13, main_stream);

        src1_f16 = src1_f16_alloc.get();
        s11 = ne10;
        s12 = ne11*s11;
        s13 = ne12*s12;
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
    }

    ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
    char * dst_t;

    cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
    cudaDataType_t      cu_data_type    = CUDA_R_16F;

    // dst strides
    size_t nbd2 = dst->nb[2];
    size_t nbd3 = dst->nb[3];

    const half  alpha_f16 = 1.0f;
    const half  beta_f16  = 0.0f;

    const float alpha_f32 = 1.0f;
    const float beta_f32  = 0.0f;

    const void * alpha = &alpha_f16;
    const void * beta  = &beta_f16;

    if (dst->op_params[0] == GGML_PREC_DEFAULT) {
        dst_t = (char *) dst_f16.alloc(ne_dst);

        nbd2 /= sizeof(float) / sizeof(half);
        nbd3 /= sizeof(float) / sizeof(half);
    } else {
        dst_t = (char *) dst_ddf;

        cu_compute_type = CUBLAS_COMPUTE_32F;
        cu_data_type    = CUDA_R_32F;

        alpha = &alpha_f32;
        beta  = &beta_f32;
    }

1828
1829
1830
    int id = ggml_cuda_get_device();
    const int cc = ggml_cuda_info().devices[id].cc;
    if (GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA4(cc)) {
1831
1832
1833
1834
1835
        cu_compute_type = CUBLAS_COMPUTE_32F;
        alpha = &alpha_f32;
        beta  = &beta_f32;
    }

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
    GGML_ASSERT(ne12 % ne02 == 0);
    GGML_ASSERT(ne13 % ne03 == 0);

    // broadcast factors
    const int64_t r2 = ne12/ne02;
    const int64_t r3 = ne13/ne03;

#if 0
    // use cublasGemmEx
    {
        for (int i13 = 0; i13 < ne13; ++i13) {
            for (int i12 = 0; i12 < ne12; ++i12) {
                int i03 = i13 / r3;
                int i02 = i12 / r2;

                CUBLAS_CHECK(
1852
1853
1854
1855
1856
1857
1858
                cublasGemmEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
                    ne01, ne11, ne10,
                    alpha, (const char *) src0_f16 + i03*nb03 + i02*nb02, CUDA_R_16F,   nb01/sizeof(half),
                                          src1_f16 + i13*s13  + i12*s12,  CUDA_R_16F,   s11,
                    beta,  (      char *)    dst_t + i13*nbd3 + i12*nbd2, cu_data_type, ne0,
                    cu_compute_type,
                    CUBLAS_GEMM_DEFAULT_TENSOR_OP));
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
            }
        }
    }
#else
    if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
        // there is no broadcast and src0, src1 are contiguous across dims 2, 3
        // use cublasGemmStridedBatchedEx
        CUBLAS_CHECK(
        cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
                ne01, ne11, ne10,
1869
1870
1871
                alpha, src0_f16, CUDA_R_16F,   nb01/nb00, nb02/nb00, // strideA
                       src1_f16, CUDA_R_16F,   s11,       s12,       // strideB
                beta,     dst_t, cu_data_type, ne0,       ne1*ne0,   // strideC
1872
1873
1874
1875
1876
                ne12*ne13,
                cu_compute_type,
                CUBLAS_GEMM_DEFAULT_TENSOR_OP));
    } else {
        // use cublasGemmBatchedEx
1877
        const int64_t ne23 = ne12*ne13;
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888

        ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
        ggml_cuda_pool_alloc<      void *> ptrs_dst(ctx.pool(), 1*ne23);

        dim3 block_dims(ne13, ne12);
        k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
                src0_f16, src1_f16, dst_t,
                ptrs_src.get(), ptrs_dst.get(),
                ne12, ne13,
                ne23,
                nb02, nb03,
1889
1890
                src1->type == GGML_TYPE_F16 ? nb12 : s12*sizeof(half),
                src1->type == GGML_TYPE_F16 ? nb13 : s13*sizeof(half),
1891
1892
1893
1894
1895
1896
1897
1898
                nbd2, nbd3,
                r2, r3);
        CUDA_CHECK(cudaGetLastError());

        CUBLAS_CHECK(
        cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
                ne01, ne11, ne10,
                alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F,   nb01/nb00,
1899
1900
                       (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F,   s11,
                beta,  (      void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne0,
1901
1902
1903
1904
1905
1906
                ne23,
                cu_compute_type,
                CUBLAS_GEMM_DEFAULT_TENSOR_OP));
    }
#endif

1907
    if (dst->op_params[0] == GGML_PREC_DEFAULT && cu_data_type == CUDA_R_16F) {
1908
1909
1910
1911
1912
1913
        const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
        to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
    }
}

static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
1914
    const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
1915

1916
1917
1918
1919
1920
1921
    // If src0 is a temporary compute buffer it may have some padding that needs to be cleared for mul_mat_vec_q or mul_mat_q.
    // But if src0 is also a view of another tensor then this cannot be done safely because it may overwrite valid tensor data.
    // Therefore, in such cases use cuBLAS.
    const bool bad_padding_clear = ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE
        && ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) && src0->view_src;

1922
    bool use_mul_mat_vec   = (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16)
1923
        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
1924
        && src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
1925
    bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear
1926
1927
        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
        && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
1928
    bool use_mul_mat_q     = ggml_is_quantized(src0->type) && !bad_padding_clear
1929
1930
        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;

1931
1932
    bool any_gpus_with_slow_fp16   = false;
    bool any_gpus_without_fp16_mma = false;
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942

    if (split) {
        ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
        auto & tensor_split = buft_ctx->tensor_split;
        for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
            // skip devices that are not going to do any work:
            if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
                continue;
            }

1943
1944
            const int cc              = ggml_cuda_info().devices[id].cc;
            use_mul_mat_q             = use_mul_mat_q             && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
1945
1946
            any_gpus_with_slow_fp16   = any_gpus_with_slow_fp16   || !fast_fp16_hardware_available(cc);
            any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_hardware_available(cc);
1947
1948
        }
    } else {
1949
1950
        const int cc              = ggml_cuda_info().devices[ctx.device].cc;
        use_mul_mat_q             = use_mul_mat_q             && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
1951
1952
        any_gpus_with_slow_fp16   = any_gpus_with_slow_fp16   || !fast_fp16_hardware_available(cc);
        any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_hardware_available(cc);
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
    }

    // debug helpers
    //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
    //printf("      %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
    //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
    //printf("      %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
    //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
    //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);

1963
    if (!split && use_mul_mat_vec && (src0->ne[1] <= MMV_MAX_ROWS || any_gpus_without_fp16_mma)) {
1964
1965
        // the custom F16 vector kernel can be used over batched cuBLAS GEMM
        // but this is only faster for GPUs without tensor cores or with a thin src0 matrix (particularly KQV in attention)
1966
1967
1968
1969
1970
1971
1972
        ggml_cuda_mul_mat_vec(ctx, src0, src1, nullptr, dst);
    } else if (!split && use_mul_mat_vec_q) {
        ggml_cuda_mul_mat_vec_q(ctx, src0, src1, nullptr, dst);
    } else if (!split && use_mul_mat_q) {
        ggml_cuda_mul_mat_q(ctx, src0, src1, nullptr, dst);
    } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16) &&
            !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
1973
        // general KQ + KQV multi-batch without FlashAttention
1974
        ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
1975
1976
    } else if (use_mul_mat_vec) {
        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec, nullptr);
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
    } else if (use_mul_mat_vec_q) {
        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, quantize_row_q8_1_cuda);
    } else if (use_mul_mat_q) {
        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, quantize_mmq_q8_1_cuda);
    } else {
        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, nullptr);
    }
}

static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const ggml_tensor * src1 = dst->src[1];
    const ggml_tensor * ids  = dst->src[2];

1991
1992
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
    GGML_ASSERT(dst->type  == GGML_TYPE_F32);
1993
    GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft) && "mul_mat_id does not support split buffers");
1994

1995
    GGML_TENSOR_BINARY_OP_LOCALS
1996

1997
    const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
1998

1999
2000
2001
2002
2003
2004
2005
2006
2007
    if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
        if (ne2 == 1) {
            if (ggml_is_quantized(src0->type)) {
                ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst);
            } else {
                ggml_cuda_mul_mat_vec(ctx, src0, src1, ids, dst);
            }
            return;
        }
2008

2009
2010
2011
2012
2013
        if (ggml_cuda_should_use_mmq(src0->type, cc, ne12)) {
            ggml_cuda_mul_mat_q(ctx, src0, src1, ids, dst);
            return;
        }
    }
2014

2015
    cudaStream_t stream = ctx.stream();
2016

2017
2018
    GGML_ASSERT(nb12 % nb11 == 0);
    GGML_ASSERT(nb2  % nb1  == 0);
2019

2020
2021
2022
2023
2024
    const ggml_type type_src1_sorted = (src0->type == GGML_TYPE_F16 && !fast_fp16_hardware_available(cc))
        || ggml_is_quantized(src0->type) ? GGML_TYPE_F32 : src0->type;
    const ggml_type type_dst_sorted  = GGML_TYPE_F32;
    const size_t ts_src1_sorted = ggml_type_size(type_src1_sorted);
    const size_t ts_dst_sorted  = ggml_type_size(type_dst_sorted);
2025

2026
2027
    const int64_t n_expert_used = ids->ne[0];
    const int64_t ne_get_rows = ne12 * n_expert_used;
2028

2029
2030
2031
    std::vector<int32_t> ids_to_sorted_host;
    ids_to_sorted_host.reserve(2*ne_get_rows);
    std::vector<int32_t> ids_from_sorted_host(ne_get_rows);
2032

2033
    ggml_cuda_pool_alloc<int32_t> ids_buf_dev(ctx.pool(), 2*ne_get_rows);
2034

2035
    std::vector<int32_t> tokens_per_expert(ne02);
2036

2037
2038
    ggml_cuda_pool_alloc<char> src1_sorted(ctx.pool(), ne12*n_expert_used*ne10*ts_src1_sorted);
    ggml_cuda_pool_alloc<char>  dst_sorted(ctx.pool(), ne2 *n_expert_used* ne0*ts_dst_sorted);
2039

2040
2041
2042
    std::vector<char> ids_host(ggml_nbytes(ids));
    CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids->data, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
    CUDA_CHECK(cudaStreamSynchronize(stream));
2043

2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
    for (int64_t i02 = 0; i02 < ne02; ++i02) { // expert matrices
        for (int64_t i12 = 0; i12 < ne12; ++i12) { // tokens
            for (int64_t iex = 0; iex < n_expert_used; ++iex) {
                const int32_t expert_to_use = *(const int32_t *)(ids_host.data() + i12*ids->nb[1] + iex*ids->nb[0]);
                assert(expert_to_use >= 0 && expert_to_use < ne02);
                if (expert_to_use == i02) {
                    ids_from_sorted_host[i12*n_expert_used + iex] = ids_to_sorted_host.size();
                    ids_to_sorted_host.push_back(i12*ne11 + iex % ne11);
                    tokens_per_expert[i02]++;
                    break;
2054
2055
                }
            }
2056
2057
2058
        }
    }
    GGML_ASSERT(ids_to_sorted_host.size() == size_t(ne_get_rows));
2059

2060
    ids_to_sorted_host.insert(ids_to_sorted_host.end(), ids_from_sorted_host.begin(), ids_from_sorted_host.end());
2061

2062
2063
    CUDA_CHECK(cudaMemcpyAsync(ids_buf_dev.ptr, ids_to_sorted_host.data(), 2*ne_get_rows*sizeof(int32_t), cudaMemcpyHostToDevice, stream));
    CUDA_CHECK(cudaStreamSynchronize(stream));
2064

2065
2066
    const int32_t * ids_to_sorted   = ids_buf_dev.ptr + 0*ne_get_rows;
    const int32_t * ids_from_sorted = ids_buf_dev.ptr + 1*ne_get_rows;
2067

2068
2069
2070
2071
2072
    get_rows_cuda(src1->data, src1->type, ids_to_sorted, src1_sorted.ptr, type_src1_sorted,
        ne10, nb11, nb12, nb13,
        ne_get_rows, 1, 1, sizeof(int32_t), ne_get_rows*sizeof(int32_t), ne_get_rows*sizeof(int32_t),
        ne10*ts_src1_sorted, ne_get_rows*ne10*ts_src1_sorted, ne_get_rows*ne10*ts_src1_sorted, stream);
    CUDA_CHECK(cudaGetLastError());
2073

2074
2075
2076
2077
2078
2079
    char * src1_data_cur = (char *) src1_sorted.ptr;
    char *  dst_data_cur = (char *)  dst_sorted.ptr;
    for (int64_t i02 = 0; i02 < ne02; ++i02) {
        if (tokens_per_expert[i02] == 0) {
            continue;
        }
2080

2081
        ggml_tensor src0_slice = *src0;
2082
2083
2084
2085
2086
        src0_slice.ne[2]    = 1;
        src0_slice.nb[3]    = src0_slice.nb[2];
        src0_slice.op       = GGML_OP_VIEW;
        src0_slice.view_src = dst->src[0]; // non-const pointer to src0
        src0_slice.data     = (char *) src0->data + i02*nb02;
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117

        ggml_tensor src1_slice;
        memset(&src1_slice, 0, sizeof(src1_slice));
        src1_slice.buffer = src1->buffer;
        src1_slice.type   = type_src1_sorted;
        src1_slice.ne[0]  = ne10;
        src1_slice.ne[1]  = tokens_per_expert[i02];
        src1_slice.ne[2]  = 1;
        src1_slice.ne[3]  = 1;
        src1_slice.nb[0]  = ts_src1_sorted;
        src1_slice.nb[1]  = src1_slice.ne[0] * src1_slice.nb[0];
        src1_slice.nb[2]  = src1_slice.ne[1] * src1_slice.nb[1];
        src1_slice.nb[3]  = src1_slice.ne[2] * src1_slice.nb[2];
        src1_slice.data   = src1_data_cur;

        ggml_tensor dst_slice;
        memset(&dst_slice, 0, sizeof(dst_slice));
        dst_slice.buffer = dst->buffer;
        dst_slice.type   = type_dst_sorted;
        dst_slice.ne[0]  = ne0;
        dst_slice.ne[1]  = tokens_per_expert[i02];
        dst_slice.ne[2]  = 1;
        dst_slice.ne[3]  = 1;
        dst_slice.nb[0]  = ts_dst_sorted;
        dst_slice.nb[1]  = dst_slice.ne[0] * dst_slice.nb[0];
        dst_slice.nb[2]  = dst_slice.ne[1] * dst_slice.nb[1];
        dst_slice.nb[3]  = dst_slice.ne[2] * dst_slice.nb[2];
        dst_slice.data   = dst_data_cur;

        ggml_cuda_mul_mat(ctx, &src0_slice, &src1_slice, &dst_slice);
        CUDA_CHECK(cudaGetLastError());
2118

2119
2120
        src1_data_cur += src1_slice.nb[2];
        dst_data_cur  +=  dst_slice.nb[2];
2121
    }
2122
2123
2124
2125
2126

    get_rows_cuda(dst_sorted.ptr, type_dst_sorted, ids_from_sorted, dst->data, dst->type,
        ne0, ne0*ts_dst_sorted, ne_get_rows*ne0*ts_dst_sorted, ne_get_rows*ne0*ts_dst_sorted,
        ne_get_rows, 1, 1, sizeof(int32_t), ne_get_rows*sizeof(int32_t), ne_get_rows*sizeof(int32_t),
        nb1, nb2, nb3, stream);
2127
2128
2129
2130
}

static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
    // why is this here instead of mul_mat?
2131
    if (dst->src[0] != nullptr && ggml_backend_buft_is_cuda_split(dst->src[0]->buffer->buft)) {
2132
2133
2134
2135
        ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
    }

    switch (dst->op) {
2136
2137
2138
2139
2140
2141
        case GGML_OP_ARGMAX:
            ggml_cuda_argmax(ctx, dst);
            break;
        case GGML_OP_COUNT_EQUAL:
            ggml_cuda_count_equal(ctx, dst);
            break;
2142
2143
2144
        case GGML_OP_REPEAT:
            ggml_cuda_op_repeat(ctx, dst);
            break;
2145
2146
2147
        case GGML_OP_REPEAT_BACK:
            ggml_cuda_op_repeat_back(ctx, dst);
            break;
2148
2149
2150
        case GGML_OP_GET_ROWS:
            ggml_cuda_op_get_rows(ctx, dst);
            break;
2151
2152
2153
        case GGML_OP_GET_ROWS_BACK:
            ggml_cuda_op_get_rows_back(ctx, dst);
            break;
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
        case GGML_OP_DUP:
            ggml_cuda_dup(ctx, dst);
            break;
        case GGML_OP_CPY:
            ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]);
            break;
        case GGML_OP_CONT:
            ggml_cuda_dup(ctx, dst);
            break;
        case GGML_OP_ADD:
2164
        case GGML_OP_ADD1: // TODO: more efficient implementation
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
            ggml_cuda_op_add(ctx, dst);
            break;
        case GGML_OP_SUB:
            ggml_cuda_op_sub(ctx, dst);
            break;
        case GGML_OP_ACC:
            ggml_cuda_op_acc(ctx, dst);
            break;
        case GGML_OP_MUL:
            ggml_cuda_op_mul(ctx, dst);
            break;
        case GGML_OP_DIV:
            ggml_cuda_op_div(ctx, dst);
            break;
        case GGML_OP_UNARY:
            switch (ggml_get_unary_op(dst)) {
2181
2182
2183
2184
2185
2186
                case GGML_UNARY_OP_ABS:
                    ggml_cuda_op_abs(ctx, dst);
                    break;
                case GGML_UNARY_OP_SGN:
                    ggml_cuda_op_sgn(ctx, dst);
                    break;
2187
2188
2189
2190
2191
2192
                case GGML_UNARY_OP_NEG:
                    ggml_cuda_op_neg(ctx, dst);
                    break;
                case GGML_UNARY_OP_STEP:
                    ggml_cuda_op_step(ctx, dst);
                    break;
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
                case GGML_UNARY_OP_GELU:
                    ggml_cuda_op_gelu(ctx, dst);
                    break;
                case GGML_UNARY_OP_SILU:
                    ggml_cuda_op_silu(ctx, dst);
                    break;
                case GGML_UNARY_OP_GELU_QUICK:
                    ggml_cuda_op_gelu_quick(ctx, dst);
                    break;
                case GGML_UNARY_OP_TANH:
                    ggml_cuda_op_tanh(ctx, dst);
                    break;
                case GGML_UNARY_OP_RELU:
                    ggml_cuda_op_relu(ctx, dst);
                    break;
                case GGML_UNARY_OP_SIGMOID:
                    ggml_cuda_op_sigmoid(ctx, dst);
                    break;
                case GGML_UNARY_OP_HARDSIGMOID:
                    ggml_cuda_op_hardsigmoid(ctx, dst);
                    break;
                case GGML_UNARY_OP_HARDSWISH:
                    ggml_cuda_op_hardswish(ctx, dst);
                    break;
2217
2218
2219
                case GGML_UNARY_OP_EXP:
                    ggml_cuda_op_exp(ctx, dst);
                    break;
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
                default:
                    return false;
            }
            break;
        case GGML_OP_NORM:
            ggml_cuda_op_norm(ctx, dst);
            break;
        case GGML_OP_GROUP_NORM:
            ggml_cuda_op_group_norm(ctx, dst);
            break;
2230
2231
2232
        case GGML_OP_L2_NORM:
            ggml_cuda_op_l2_norm(ctx, dst);
            break;
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
        case GGML_OP_CONCAT:
            ggml_cuda_op_concat(ctx, dst);
            break;
        case GGML_OP_UPSCALE:
            ggml_cuda_op_upscale(ctx, dst);
            break;
        case GGML_OP_PAD:
            ggml_cuda_op_pad(ctx, dst);
            break;
        case GGML_OP_ARANGE:
            ggml_cuda_op_arange(ctx, dst);
            break;
        case GGML_OP_TIMESTEP_EMBEDDING:
            ggml_cuda_op_timestep_embedding(ctx, dst);
            break;
        case GGML_OP_LEAKY_RELU:
            ggml_cuda_op_leaky_relu(ctx, dst);
            break;
2251
2252
2253
        case GGML_OP_SILU_BACK:
            ggml_cuda_op_silu_back(ctx, dst);
            break;
2254
2255
2256
        case GGML_OP_RMS_NORM:
            ggml_cuda_op_rms_norm(ctx, dst);
            break;
2257
2258
2259
        case GGML_OP_RMS_NORM_BACK:
            ggml_cuda_op_rms_norm_back(ctx, dst);
            break;
2260
        case GGML_OP_MUL_MAT:
2261
            ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
2262
2263
2264
2265
            break;
        case GGML_OP_MUL_MAT_ID:
            ggml_cuda_mul_mat_id(ctx, dst);
            break;
2266
2267
2268
        case GGML_OP_OUT_PROD:
            ggml_cuda_out_prod(ctx, dst);
            break;
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
        case GGML_OP_SCALE:
            ggml_cuda_op_scale(ctx, dst);
            break;
        case GGML_OP_SQR:
            ggml_cuda_op_sqr(ctx, dst);
            break;
        case GGML_OP_SQRT:
            ggml_cuda_op_sqrt(ctx, dst);
            break;
        case GGML_OP_SIN:
            ggml_cuda_op_sin(ctx, dst);
            break;
        case GGML_OP_COS:
            ggml_cuda_op_cos(ctx, dst);
            break;
        case GGML_OP_CLAMP:
            ggml_cuda_op_clamp(ctx, dst);
            break;
2287
2288
2289
        case GGML_OP_LOG:
            ggml_cuda_op_log(ctx, dst);
            break;
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
        case GGML_OP_NONE:
        case GGML_OP_RESHAPE:
        case GGML_OP_VIEW:
        case GGML_OP_PERMUTE:
        case GGML_OP_TRANSPOSE:
                break;
        case GGML_OP_DIAG_MASK_INF:
            ggml_cuda_op_diag_mask_inf(ctx, dst);
            break;
        case GGML_OP_SOFT_MAX:
            ggml_cuda_op_soft_max(ctx, dst);
            break;
2302
2303
2304
        case GGML_OP_SOFT_MAX_BACK:
            ggml_cuda_op_soft_max_back(ctx, dst);
            break;
2305
2306
2307
        case GGML_OP_ROPE:
            ggml_cuda_op_rope(ctx, dst);
            break;
2308
2309
2310
        case GGML_OP_ROPE_BACK:
            ggml_cuda_op_rope_back(ctx, dst);
            break;
2311
2312
2313
2314
2315
2316
2317
2318
2319
        case GGML_OP_IM2COL:
            ggml_cuda_op_im2col(ctx, dst);
            break;
        case GGML_OP_CONV_TRANSPOSE_1D:
            ggml_cuda_op_conv_transpose_1d(ctx,dst);
            break;
        case GGML_OP_POOL_2D:
            ggml_cuda_op_pool2d(ctx, dst);
            break;
2320
2321
2322
        case GGML_OP_SUM:
            ggml_cuda_op_sum(ctx, dst);
            break;
2323
2324
2325
        case GGML_OP_SUM_ROWS:
            ggml_cuda_op_sum_rows(ctx, dst);
            break;
Michael Yang's avatar
Michael Yang committed
2326
2327
2328
        case GGML_OP_MEAN:
            ggml_cuda_op_mean(ctx, dst);
            break;
2329
2330
2331
2332
2333
2334
        case GGML_OP_SSM_CONV:
            ggml_cuda_op_ssm_conv(ctx, dst);
            break;
        case GGML_OP_SSM_SCAN:
            ggml_cuda_op_ssm_scan(ctx, dst);
            break;
2335
2336
2337
2338
2339
2340
2341
2342
2343
        case GGML_OP_ARGSORT:
            ggml_cuda_op_argsort(ctx, dst);
            break;
        case GGML_OP_FLASH_ATTN_EXT:
            ggml_cuda_flash_attn_ext(ctx, dst);
            break;
        case GGML_OP_CROSS_ENTROPY_LOSS:
            ggml_cuda_cross_entropy_loss(ctx, dst);
            break;
2344
2345
        case GGML_OP_RWKV_WKV6:
            ggml_cuda_op_rwkv_wkv6(ctx, dst);
2346
            break;
2347
2348
2349
        case GGML_OP_GATED_LINEAR_ATTN:
            ggml_cuda_op_gated_linear_attn(ctx, dst);
            break;
2350
2351
2352
        case GGML_OP_RWKV_WKV7:
            ggml_cuda_op_rwkv_wkv7(ctx, dst);
            break;
2353
2354
2355
2356
2357
2358
        case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
            ggml_cuda_cross_entropy_loss_back(ctx, dst);
            break;
        case GGML_OP_OPT_STEP_ADAMW:
            ggml_cuda_opt_step_adamw(ctx, dst);
            break;
2359
2360
2361
2362
2363
2364
        default:
            return false;
    }

    cudaError_t err = cudaGetLastError();
    if (err != cudaSuccess) {
2365
        GGML_LOG_ERROR("%s: %s failed\n", __func__, ggml_op_desc(dst));
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
        CUDA_CHECK(err);
    }

    return true;
}

////////////////////////////////////////////////////////////////////////////////

// backend

2376
static const char * ggml_backend_cuda_get_name(ggml_backend_t backend) {
2377
2378
2379
2380
2381
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;

    return cuda_ctx->name.c_str();
}

2382
static void ggml_backend_cuda_free(ggml_backend_t backend) {
2383
2384
2385
2386
2387
2388
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;

    delete cuda_ctx;
    delete backend;
}

2389
static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
2390
2391
2392
2393
2394
2395
2396
2397
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
    ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;

    GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");

    CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
}

2398
static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
2399
2400
2401
2402
2403
2404
2405
2406
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
    ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;

    GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");

    CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
}

2407
static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
    ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
    ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;

    if (!ggml_backend_is_cuda(backend_src) || !ggml_backend_is_cuda(backend_dst)) {
        return false;
    }

    if (!ggml_backend_buffer_is_cuda(src->buffer) || !ggml_backend_buffer_is_cuda(dst->buffer)) {
        return false;
    }

    // device -> device copy
    ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
    ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;

    ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
    ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;

    if (cuda_ctx_src->device != buf_ctx_src->device || cuda_ctx_dst->device != buf_ctx_dst->device) {
#ifndef NDEBUG
2428
        GGML_LOG_DEBUG("%s: backend and buffer devices do not match\n", __func__);
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
#endif
        return false;
    }

    if (backend_src != backend_dst) {
        // copy on src stream
        if (cuda_ctx_src->device == cuda_ctx_dst->device) {
            CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));
        } else {
#ifdef GGML_CUDA_NO_PEER_COPY
            return false;
#else
            CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream()));
#endif
        }

        // record event on src stream after the copy
        if (!cuda_ctx_src->copy_event) {
            ggml_cuda_set_device(cuda_ctx_src->device);
            CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
        }

        CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream()));

        // wait on dst stream for the copy to complete
        CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
    } else {
        // src and dst are on the same backend
        CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));
    }
    return true;
}

2462
static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
2463
2464
2465
2466
2467
2468
2469
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;

    CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));

    GGML_UNUSED(backend);
}

2470
#ifdef USE_CUDA_GRAPH
2471
static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
2472
    bool use_cuda_graph) {
2473
2474

    // Loop over nodes in GGML graph to obtain info needed for CUDA graph
2475
2476
    cuda_ctx->cuda_graph->cpy_dest_ptrs.clear();

2477
2478
2479
    const std::string gemma3n_per_layer_proj_src1_name   = " (reshaped)";
    const std::string gemma3n_node_name                  = "node_";

2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
    for (int i = 0; i < cgraph->n_nodes; i++) {
        ggml_tensor * node = cgraph->nodes[i];

        if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
            continue;
        }

        if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) {
            use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
#ifndef NDEBUG
            GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__);
#endif
        }

2494
        if (node->op == GGML_OP_MUL_MAT_ID && node->ne[2] != 1) {
2495
2496
            use_cuda_graph = false; // This node type is not supported by CUDA graph capture
#ifndef NDEBUG
2497
            GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported node type\n", __func__);
2498
2499
2500
#endif
        }

2501
2502
2503
2504
2505
2506
2507
2508
        // workarounds to exclude Gemma3n's `project_per_layer_input` operation from the batch-size heuristic, specific to ollama's implementation of gemma3n
        // number of layers is different for per_layer_proj between gemma3n:2b and gemma3n:4b, which is why we don't check that value here
        if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1 && !(node->ne[0] == 256
                                                                                    && node->ne[2] == 1
                                                                                    && node->ne[3] == 1
                                                                                    && node->src[0] ? std::string(node->src[0]->name).find(gemma3n_node_name) != std::string::npos : false
                                                                                    && node->src[1] ? node->src[1]->name == gemma3n_per_layer_proj_src1_name : false)) {
            // Generally, changes in batch size or context size can cause changes to the grid size of some kernels.
2509
2510
            use_cuda_graph = false;
#ifndef NDEBUG
2511
            GGML_LOG_INFO("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
2512
2513
2514
2515
#endif
        }

        if (node->op == GGML_OP_CPY) {
2516
2517
2518
2519
2520

            // Store the pointers which are updated for each token, such that these can be sent
            // to the device and accessed using indirection from CUDA graph
            cuda_ctx->cuda_graph->cpy_dest_ptrs.push_back((char *) node->src[1]->data);

2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
            // store a pointer to each copy op CUDA kernel to identify it later
            void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
            if (!ptr) {
                use_cuda_graph = false;
#ifndef NDEBUG
                GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
#endif
            }
        }

        if (!use_cuda_graph) {
            break;
        }
    }

2536
2537
2538
2539
2540
2541
    if (use_cuda_graph) {
        cuda_ctx->cuda_graph->use_cpy_indirection = true;
        // copy pointers to GPU so they can be accessed via indirection within CUDA graph
        ggml_cuda_cpy_dest_ptrs_copy(cuda_ctx->cuda_graph.get(), cuda_ctx->cuda_graph->cpy_dest_ptrs.data(), cuda_ctx->cuda_graph->cpy_dest_ptrs.size(), cuda_ctx->stream());
    }

2542
2543
2544
    return use_cuda_graph;
}

2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
    graph_node_properties->node_address = node->data;
    graph_node_properties->node_op = node->op;
    for (int i = 0; i < GGML_MAX_DIMS; i++) {
        graph_node_properties->ne[i] = node->ne[i];
        graph_node_properties->nb[i] = node->nb[i];
    }
    for (int i = 0; i < GGML_MAX_SRC; i++) {
        graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
    }
2555
    memcpy(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS);
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
}

static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
    if (node->data != graph_node_properties->node_address &&
          node->op != GGML_OP_CPY &&
          node->op != GGML_OP_VIEW) {
        return false;
    }

    if (node->op != graph_node_properties->node_op) {
        return false;
    }

    for (int i = 0; i < GGML_MAX_DIMS; i++) {
        if (node->ne[i] != graph_node_properties->ne[i]) {
            return false;
        }
        if (node->nb[i] != graph_node_properties->nb[i]) {
            return false;
        }
    }

    for (int i = 0; i < GGML_MAX_SRC; i++) {
        if (node->src[i] &&
            node->src[i]->data != graph_node_properties->src_address[i] &&
            node->op != GGML_OP_CPY &&
            node->op != GGML_OP_VIEW
        ) {
            return false;
        }
    }
2587
2588
2589
2590
2591
2592

    if (node->op == GGML_OP_SCALE &&
        memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
        return false;
    }

2593
2594
2595
    return true;
}

2596
static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
2597
2598
2599

    bool cuda_graph_update_required = false;

2600
2601
    if (cuda_ctx->cuda_graph->instance == nullptr) {
        cuda_graph_update_required = true;
2602
2603
    }

2604
2605
2606
2607
    // Check if the graph size has changed
    if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
        cuda_graph_update_required = true;
        cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
2608
2609
    }

2610
2611
2612
2613
2614
2615
    // Loop over nodes in GGML graph to determine if CUDA graph update is required
    // and store properties to allow this comparison for the next token
    for (int i = 0; i < cgraph->n_nodes; i++) {
        bool has_matching_properties = true;
        if (!cuda_graph_update_required) {
            has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
2616
        }
2617
        if (!has_matching_properties) {
2618
2619
            cuda_graph_update_required = true;
        }
2620
2621
        set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
    }
2622

2623
2624
    return cuda_graph_update_required;
}
2625

2626
static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
2627

2628
#if CUDART_VERSION >= 12000
2629
2630
    cudaGraphExecUpdateResultInfo result_info;
    cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
2631
2632
2633
2634
2635
2636
#else
    cudaGraphNode_t errorNode;
    cudaGraphExecUpdateResult result_info;
    cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &errorNode, &result_info);
#endif // CUDART_VERSION >= 12000

2637
    if (stat == cudaErrorGraphExecUpdateFailure) {
2638
#ifndef NDEBUG
2639
        GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__);
2640
2641
#endif

2642
2643
2644
2645
2646
2647
2648
2649
        // The pre-existing graph exec cannot be updated due to violated constraints
        // so instead clear error and re-instantiate
        (void)cudaGetLastError();
        CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
        cuda_ctx->cuda_graph->instance = nullptr;
        CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
    } else {
        GGML_ASSERT(stat == cudaSuccess);
2650
    }
2651
2652
}
#endif
2653

2654
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
2655
    bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672

    while (!graph_evaluated_or_captured) {
        // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
        // With the use of CUDA graphs, the execution will be performed by the graph launch.
        if (!use_cuda_graph || cuda_graph_update_required) {
            for (int i = 0; i < cgraph->n_nodes; i++) {
                ggml_tensor * node = cgraph->nodes[i];

                if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
                    continue;
                }

#ifndef NDEBUG
                assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
                for (int j = 0; j < GGML_MAX_SRC; j++) {
                    if (node->src[j] != nullptr) {
                        assert(node->src[j]->buffer);
2673
2674
                        assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) ||
                               ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft));
2675
2676
2677
2678
2679
2680
                    }
                }
#endif

                bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
                if (!ok) {
2681
                    GGML_LOG_ERROR("%s: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
                }
                GGML_ASSERT(ok);
            }
        }

#ifdef USE_CUDA_GRAPH
        if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture
            if (cuda_ctx->cuda_graph->graph != nullptr) {
                CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
                cuda_ctx->cuda_graph->graph = nullptr;
            }

2694
            CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
            graph_evaluated_or_captured = true; // CUDA graph has been captured
        } else {
            graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
        }
    }

    if (use_cuda_graph) {
        if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
            CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
        }
2705
2706
2707
        if (cuda_graph_update_required) { // Update graph executable
            update_cuda_graph_executable(cuda_ctx);
        }
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
        // Launch graph
        CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
#else
        graph_evaluated_or_captured = true;
#endif  // USE_CUDA_GRAPH
    }
}

static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;

    ggml_cuda_set_device(cuda_ctx->device);

#ifdef USE_CUDA_GRAPH
    static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);

    // Objects required for CUDA Graph
    if (cuda_ctx->cuda_graph == nullptr) {
        cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
    }

    bool use_cuda_graph = true;
    bool cuda_graph_update_required = false;

    if (cuda_ctx->cuda_graph->graph == nullptr) {
        if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) {
            cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
#ifndef NDEBUG
            GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
#endif
2738
        }
2739
    }
2740

2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
    // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
    // or previous graph capture failure.
    // Also disable for multi-gpu for now. TO DO investigate
    if (disable_cuda_graphs_due_to_env
        || cuda_ctx->cuda_graph->disable_due_to_gpu_arch
        || cuda_ctx->cuda_graph->disable_due_to_too_many_updates
        || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
        use_cuda_graph = false;
    }

    if (use_cuda_graph) {
        cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);

2754
        use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph, use_cuda_graph);
2755
2756
2757
2758
2759
2760

        // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
        if (use_cuda_graph && cuda_graph_update_required) {
            cuda_ctx->cuda_graph->number_consecutive_updates++;
        } else {
            cuda_ctx->cuda_graph->number_consecutive_updates = 0;
2761
2762
        }

2763
2764
        if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
            cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
2765
#ifndef NDEBUG
2766
            GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
2767
2768
#endif
        }
2769
2770
2771
2772
2773
2774
    }

    if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
        CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
    }

2775
2776
2777
2778
    if (!use_cuda_graph) {
        cuda_ctx->cuda_graph->use_cpy_indirection = false;
    }

2779
#else
2780
2781
    bool use_cuda_graph = false;
    bool cuda_graph_update_required = false;
2782
#endif // USE_CUDA_GRAPH
2783
2784
2785

    bool graph_evaluated_or_captured = false;

2786
    evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
2787
2788
2789
2790

    return GGML_STATUS_SUCCESS;
}

2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
static void ggml_backend_cuda_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;

    CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
}

static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;

    if (ggml_backend_is_cuda(backend)) {
        CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
    } else {
#if 0
        // untested
        auto wait_fn = [](void * user_data) {
            ggml_backend_event_t event = (ggml_backend_event_t)user_data;
            ggml_backend_event_synchronize(event);
        };

        CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
#endif
        GGML_ABORT("fatal error");
    }
}

static const ggml_backend_i ggml_backend_cuda_interface = {
    /* .get_name                = */ ggml_backend_cuda_get_name,
    /* .free                    = */ ggml_backend_cuda_free,
    /* .set_tensor_async        = */ ggml_backend_cuda_set_tensor_async,
    /* .get_tensor_async        = */ ggml_backend_cuda_get_tensor_async,
    /* .cpy_tensor_async        = */ ggml_backend_cuda_cpy_tensor_async,
    /* .synchronize             = */ ggml_backend_cuda_synchronize,
    /* .graph_plan_create       = */ NULL,
    /* .graph_plan_free         = */ NULL,
    /* .graph_plan_update       = */ NULL,
    /* .graph_plan_compute      = */ NULL,
    /* .graph_compute           = */ ggml_backend_cuda_graph_compute,
    /* .event_record            = */ ggml_backend_cuda_event_record,
    /* .event_wait              = */ ggml_backend_cuda_event_wait,
};

static ggml_guid_t ggml_backend_cuda_guid() {
    static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
    return &guid;
}

bool ggml_backend_is_cuda(ggml_backend_t backend) {
    return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
}

int ggml_backend_cuda_get_device_count() {
    return ggml_cuda_info().device_count;
}

void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
    cudaDeviceProp prop;
    CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
    snprintf(description, description_size, "%s", prop.name);
}

void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
    ggml_cuda_set_device(device);

    CUDA_CHECK(cudaMemGetInfo(free, total));
}

bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
    if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
        return false;
    }

2862
#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA)
2863
2864
2865
    cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
    if (err != cudaSuccess) {
        // clear the error
2866
        (void)cudaGetLastError();
2867
2868
2869
2870
2871
2872
2873

        GGML_LOG_DEBUG("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
                           size / 1024.0 / 1024.0, cudaGetErrorString(err));
        return false;
    }
    return true;
#else
2874
2875
    GGML_UNUSED(buffer);
    GGML_UNUSED(size);
2876
    return false;
2877
#endif // CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA)
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
}

void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
    if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
        return;
    }

    cudaError_t err = cudaHostUnregister(buffer);
    if (err != cudaSuccess) {
        // clear the error
2888
        (void)cudaGetLastError();
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
    }
}


// backend device

struct ggml_backend_cuda_device_context {
    int device;
    std::string name;
    std::string description;
2899
    std::string id;
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
};

static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
    ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
    return ctx->name.c_str();
}

static const char * ggml_backend_cuda_device_get_description(ggml_backend_dev_t dev) {
    ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
    return ctx->description.c_str();
}

2912
static const char * ggml_backend_cuda_device_get_id(ggml_backend_dev_t dev) {
2913
    ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
2914
    return ctx->id.c_str();
2915
2916
}

2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
    ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
    ggml_cuda_set_device(ctx->device);
    CUDA_CHECK(cudaMemGetInfo(free, total));
}

static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend_dev_t dev) {
    GGML_UNUSED(dev);
    return GGML_BACKEND_DEVICE_TYPE_GPU;
}

static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
    props->name        = ggml_backend_cuda_device_get_name(dev);
    props->description = ggml_backend_cuda_device_get_description(dev);
2931
    props->id          = ggml_backend_cuda_device_get_id(dev);
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
    props->type        = ggml_backend_cuda_device_get_type(dev);
    ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);

    bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
#ifdef GGML_CUDA_NO_PEER_COPY
    bool events = false;
#else
    bool events = true;
#endif

    props->caps = {
        /* .async                 = */ true,
        /* .host_buffer           = */ host_buffer,
        /* .buffer_from_host_ptr  = */ false,
        /* .events                = */ events,
    };
}

static ggml_backend_t ggml_backend_cuda_device_init_backend(ggml_backend_dev_t dev, const char * params) {
    GGML_UNUSED(params);
    ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
    return ggml_backend_cuda_init(ctx->device);
}

static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_buffer_type(ggml_backend_dev_t dev) {
    ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
    return ggml_backend_cuda_buffer_type(ctx->device);
}

static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_host_buffer_type(ggml_backend_dev_t dev) {
    GGML_UNUSED(dev);
    return ggml_backend_cuda_host_buffer_type();
}

// TODO: move these functions here
static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
    ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;

    // split buffers can only be used with GGML_OP_MUL_MAT
    if (op->op != GGML_OP_MUL_MAT) {
        for (int i = 0; i < GGML_MAX_SRC; i++) {
            if (op->src[i] && op->src[i]->buffer && ggml_backend_buft_is_cuda_split(op->src[i]->buffer->buft)) {
                return false;
            }
        }
    }

    // check if all the sources are allocated on this device
    for (int i = 0; i < GGML_MAX_SRC; i++) {
        if (op->src[i] && op->src[i]->buffer && ggml_backend_buft_is_cuda(op->src[i]->buffer->buft)) {
            ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)op->src[i]->buffer->buft->context;
            if (buft_ctx->device != dev_ctx->device) {
                return false;
            }
        }
    }

2989
2990
2991
    switch (op->op) {
        case GGML_OP_UNARY:
            switch (ggml_get_unary_op(op)) {
2992
2993
                case GGML_UNARY_OP_ABS:
                case GGML_UNARY_OP_SGN:
2994
2995
                case GGML_UNARY_OP_NEG:
                case GGML_UNARY_OP_STEP:
2996
2997
2998
2999
3000
3001
3002
3003
                case GGML_UNARY_OP_GELU:
                case GGML_UNARY_OP_SILU:
                case GGML_UNARY_OP_RELU:
                case GGML_UNARY_OP_SIGMOID:
                case GGML_UNARY_OP_HARDSIGMOID:
                case GGML_UNARY_OP_HARDSWISH:
                case GGML_UNARY_OP_GELU_QUICK:
                case GGML_UNARY_OP_TANH:
3004
                case GGML_UNARY_OP_EXP:
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
                    return ggml_is_contiguous(op->src[0]);
                default:
                    return false;
            }
            break;
        case GGML_OP_MUL_MAT:
        case GGML_OP_MUL_MAT_ID:
            {
                struct ggml_tensor * a = op->src[0];
                struct ggml_tensor * b = op->src[1];
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
                // for small weight matrices the active device can end up without any rows, don't use row split in those cases
                // this avoids some edge cases (and the performance would not be good anyways)
                if (a->buffer && ggml_backend_buft_is_cuda_split(a->buffer->buft)) {
                    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) a->buffer->buft->context;
                    int64_t row_low;
                    int64_t row_high;
                    get_row_split(&row_low, &row_high, a, buft_ctx->tensor_split, dev_ctx->device);
                    if (row_low == row_high) {
                        return false;
                    }
                }
3026
3027
3028
                if (b->type == GGML_TYPE_F16 && a->type != GGML_TYPE_F16) {
                    return false;
                }
3029
3030
3031
3032
3033
3034
#ifdef GGML_USE_MUSA
                if (b->type == GGML_TYPE_F16 && b->ne[2]*b->ne[3] > 1 &&
                    !ggml_is_transposed(a) && !ggml_is_transposed(b)) {
                    return false;
                }
#endif // GGML_USE_MUSA
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
                switch (a->type) {
                    case GGML_TYPE_F32:
                    case GGML_TYPE_F16:
                    case GGML_TYPE_Q4_0:
                    case GGML_TYPE_Q4_1:
                    case GGML_TYPE_Q5_0:
                    case GGML_TYPE_Q5_1:
                    case GGML_TYPE_Q8_0:
                    case GGML_TYPE_Q2_K:
                    case GGML_TYPE_Q3_K:
                    case GGML_TYPE_Q4_K:
                    case GGML_TYPE_Q5_K:
                    case GGML_TYPE_Q6_K:
                    case GGML_TYPE_Q8_K:
                    case GGML_TYPE_IQ1_M:
                    case GGML_TYPE_IQ1_S:
                    case GGML_TYPE_IQ2_S:
                    case GGML_TYPE_IQ2_XS:
                    case GGML_TYPE_IQ2_XXS:
                    case GGML_TYPE_IQ3_S:
                    case GGML_TYPE_IQ3_XXS:
                    case GGML_TYPE_IQ4_NL:
                    case GGML_TYPE_IQ4_XS:
3058
                    case GGML_TYPE_BF16:
3059
3060
3061
3062
3063
#ifdef GGML_USE_MUSA
                        if (a->type == GGML_TYPE_Q3_K) {
                            return false;
                        }
#endif // GGML_USE_MUSA
3064
3065
3066
3067
3068
                        return true;
                    default:
                        return false;
                }
            } break;
3069
        case GGML_OP_OUT_PROD:
3070
            return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
        case GGML_OP_GET_ROWS:
            {
                switch (op->src[0]->type) {
                    case GGML_TYPE_F16:
                    case GGML_TYPE_F32:
                    case GGML_TYPE_Q4_0:
                    case GGML_TYPE_Q4_1:
                    case GGML_TYPE_Q5_0:
                    case GGML_TYPE_Q5_1:
                    case GGML_TYPE_Q8_0:
                        return true;
                    default:
                        return false;
                }
            } break;
3086
3087
3088
3089
        case GGML_OP_GET_ROWS_BACK:
            {
                return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->ne[2] == 1 && op->ne[3] == 1;
            } break;
3090
3091
3092
3093
3094
3095
3096
        case GGML_OP_CPY:
            {
                ggml_type src0_type = op->src[0]->type;
                ggml_type src1_type = op->src[1]->type;
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
                    return true;
                }
3097
3098
3099
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_BF16) {
                    return true;
                }
3100
3101
3102
3103
3104
3105
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
                    return true;
                }
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
                    return true;
                }
3106
3107
3108
                if (src0_type == GGML_TYPE_Q8_0 && src1_type == GGML_TYPE_F32) {
                    return true;
                }
3109
3110
3111
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
                    return true;
                }
3112
3113
3114
                if (src0_type == GGML_TYPE_Q4_0 && src1_type == GGML_TYPE_F32) {
                    return true;
                }
3115
3116
3117
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
                    return true;
                }
3118
3119
3120
                if (src0_type == GGML_TYPE_Q4_1 && src1_type == GGML_TYPE_F32) {
                    return true;
                }
3121
3122
3123
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) {
                    return true;
                }
3124
3125
3126
                if (src0_type == GGML_TYPE_Q5_0 && src1_type == GGML_TYPE_F32) {
                    return true;
                }
3127
3128
3129
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) {
                    return true;
                }
3130
3131
3132
                if (src0_type == GGML_TYPE_Q5_1 && src1_type == GGML_TYPE_F32) {
                    return true;
                }
3133
3134
3135
3136
3137
3138
3139
3140
3141
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
                    return true;
                }
                if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
                    return true;
                }
                if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
                    return true;
                }
3142
3143
3144
                if (src0_type == src1_type && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) {
                    return true;
                }
3145
3146
3147
                return false;
            } break;
        case GGML_OP_DUP:
3148
3149
3150
3151
3152
3153
3154
3155
3156
            {
                ggml_type src0_type = op->src[0]->type;
                return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
            } break;
        case GGML_OP_ARGMAX:
        case GGML_OP_COUNT_EQUAL:
            {
                return true;
            } break;
3157
        case GGML_OP_REPEAT:
3158
3159
3160
3161
3162
            {
                ggml_type src0_type = op->src[0]->type;
                return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
            } break;
        case GGML_OP_REPEAT_BACK:
3163
                return op->type == GGML_TYPE_F32 && (op->src[0]->ne[2]*op->src[0]->ne[3]) <= (1 << 15);
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
        case GGML_OP_CONCAT:
            {
                ggml_type src0_type = op->src[0]->type;
                return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
            } break;
        case GGML_OP_CONV_TRANSPOSE_1D:
            {
                ggml_type src0_type = op->src[0]->type;
                ggml_type src1_type = op->src[1]->type;
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
                    return true;
                }
                return false;
            } break;
3178
        case GGML_OP_SILU_BACK:
3179
            return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
3180
            break;
3181
3182
        case GGML_OP_NORM:
        case GGML_OP_RMS_NORM:
3183
        case GGML_OP_L2_NORM:
3184
3185
            return true;
        case GGML_OP_RMS_NORM_BACK:
3186
3187
            return ggml_is_contiguous(op->src[0]) && op->ne[0] % WARP_SIZE == 0;
            break;
3188
3189
3190
3191
3192
3193
        case GGML_OP_NONE:
        case GGML_OP_RESHAPE:
        case GGML_OP_VIEW:
        case GGML_OP_PERMUTE:
        case GGML_OP_TRANSPOSE:
        case GGML_OP_ADD:
3194
        case GGML_OP_ADD1:
3195
3196
3197
3198
3199
3200
3201
3202
3203
        case GGML_OP_SUB:
        case GGML_OP_MUL:
        case GGML_OP_DIV:
        case GGML_OP_SCALE:
        case GGML_OP_SQR:
        case GGML_OP_SQRT:
        case GGML_OP_SIN:
        case GGML_OP_COS:
        case GGML_OP_CLAMP:
3204
3205
3206
        case GGML_OP_LOG:
        case GGML_OP_SSM_SCAN:
        case GGML_OP_SSM_CONV:
3207
            return true;
3208
        case GGML_OP_CONT:
3209
            return op->src[0]->type != GGML_TYPE_BF16;
3210
3211
3212
        case GGML_OP_DIAG_MASK_INF:
        case GGML_OP_SOFT_MAX:
            return true;
3213
3214
3215
3216
3217
        case GGML_OP_SOFT_MAX_BACK: {
            float max_bias = 0.0f;
            memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
            return max_bias == 0.0f;
        }
3218
        case GGML_OP_ROPE:
3219
        case GGML_OP_ROPE_BACK: {
3220
            return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);
3221
        }
3222
3223
        case GGML_OP_IM2COL:
        case GGML_OP_POOL_2D:
3224
        case GGML_OP_SUM:
3225
        case GGML_OP_SUM_ROWS:
Michael Yang's avatar
Michael Yang committed
3226
        case GGML_OP_MEAN:
3227
3228
        case GGML_OP_ARGSORT:
        case GGML_OP_ACC:
3229
            return true;
3230
        case GGML_OP_GROUP_NORM:
3231
            return ggml_is_contiguous(op->src[0]);
3232
        case GGML_OP_UPSCALE:
3233
            return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
3234
3235
3236
3237
        case GGML_OP_PAD:
        case GGML_OP_ARANGE:
        case GGML_OP_TIMESTEP_EMBEDDING:
        case GGML_OP_LEAKY_RELU:
3238
        case GGML_OP_RWKV_WKV6:
3239
        case GGML_OP_GATED_LINEAR_ATTN:
3240
        case GGML_OP_RWKV_WKV7:
3241
            return true;
3242
3243
3244
        case GGML_OP_FLASH_ATTN_EXT: {
#ifndef FLASH_ATTN_AVAILABLE
            return false;
3245
#endif // FLASH_ATTN_AVAILABLE
3246
            if (op->src[1]->ne[0] != op->src[2]->ne[0]) {
3247
3248
3249
3250
3251
3252
                const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
                if (!new_mma_available(cc) || cc < GGML_CUDA_CC_AMPERE) {
                    return false;
                }
                const int gqa_ratio = op->src[0]->ne[2] / op->src[1]->ne[2];
                return op->src[1]->ne[0] == 576 && op->src[2]->ne[0] == 512 && op->src[3] && gqa_ratio % 16 == 0;
3253
3254
3255
3256
3257
3258
3259
            }
            if (op->src[0]->ne[0] == 192) {
                return false;
            }
            if (op->src[0]->ne[3] != 1) {
                return false;
            }
3260
3261
3262
            if (op->src[1]->type == GGML_TYPE_BF16 || op->src[2]->type == GGML_TYPE_BF16) {
                return false;
            }
3263
3264
3265
            if (op->src[0]->ne[0] ==  64 && op->src[1]->type == GGML_TYPE_F16) {
                return true;
            }
3266
3267
3268
            if (op->src[0]->ne[0] == 128) {
                return true;
            }
3269
            if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) {
3270
3271
                return true;
            }
3272
3273
            return fp16_mma_available(ggml_cuda_info().devices[dev_ctx->device].cc) &&
                op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
3274
        }
3275
        case GGML_OP_CROSS_ENTROPY_LOSS:
3276
3277
        case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
        case GGML_OP_OPT_STEP_ADAMW:
3278
3279
3280
3281
3282
3283
            return true;
        default:
            return false;
    }
}

3284
3285
3286
static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
    return (ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev;
}
3287

3288
3289
3290
3291
3292
3293
3294
3295
static int64_t get_op_batch_size(const ggml_tensor * op) {
    switch (op->op) {
        case GGML_OP_GET_ROWS:
            return 0;
        case GGML_OP_MUL_MAT:
            return op->ne[1];
        case GGML_OP_MUL_MAT_ID:
        case GGML_OP_ROPE:
3296
        case GGML_OP_ROPE_BACK:
3297
3298
3299
            return op->ne[2];
        default:
            return ggml_nrows(op);
3300
3301
3302
    }
}

3303
static bool ggml_backend_cuda_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
3304
3305
    const int min_batch_size = 32;

3306
    return get_op_batch_size(op) >= min_batch_size;
3307

3308
    GGML_UNUSED(dev);
3309
3310
}

3311
static ggml_backend_event_t ggml_backend_cuda_device_event_new(ggml_backend_dev_t dev) {
3312
3313
3314
#ifdef GGML_CUDA_NO_PEER_COPY
    return nullptr;
#else
3315
    ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *)dev->context;
3316

3317
    ggml_cuda_set_device(dev_ctx->device);
3318
3319
3320
3321
3322

    cudaEvent_t event;
    CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));

    return new ggml_backend_event {
3323
        /* .device  = */ dev,
3324
3325
3326
3327
3328
        /* .context = */ event,
    };
#endif
}

3329
3330
static void ggml_backend_cuda_device_event_free(ggml_backend_dev_t dev, ggml_backend_event_t event) {
    GGML_UNUSED(dev);
3331

3332
    CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
3333
3334
3335
    delete event;
}

3336
3337
3338
static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, ggml_backend_event_t event) {
    GGML_UNUSED(dev);
    CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
3339
3340
}

3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
    /* .get_name                = */ ggml_backend_cuda_device_get_name,
    /* .get_description         = */ ggml_backend_cuda_device_get_description,
    /* .get_memory              = */ ggml_backend_cuda_device_get_memory,
    /* .get_type                = */ ggml_backend_cuda_device_get_type,
    /* .get_props               = */ ggml_backend_cuda_device_get_props,
    /* .init_backend            = */ ggml_backend_cuda_device_init_backend,
    /* .get_buffer_type         = */ ggml_backend_cuda_device_get_buffer_type,
    /* .get_host_buffer_type    = */ ggml_backend_cuda_device_get_host_buffer_type,
    /* .buffer_from_host_ptr    = */ NULL,
    /* .supports_op             = */ ggml_backend_cuda_device_supports_op,
    /* .supports_buft           = */ ggml_backend_cuda_device_supports_buft,
    /* .offload_op              = */ ggml_backend_cuda_device_offload_op,
    /* .event_new               = */ ggml_backend_cuda_device_event_new,
    /* .event_free              = */ ggml_backend_cuda_device_event_free,
    /* .event_synchronize       = */ ggml_backend_cuda_device_event_synchronize,
};
3358

3359
// backend reg
3360

3361
3362
3363
struct ggml_backend_cuda_reg_context {
    std::vector<ggml_backend_dev_t> devices;
};
3364

3365
3366
3367
static const char * ggml_backend_cuda_reg_get_name(ggml_backend_reg_t reg) {
    GGML_UNUSED(reg);
    return GGML_CUDA_NAME;
3368
3369
}

3370
3371
3372
3373
static size_t ggml_backend_cuda_reg_get_device_count(ggml_backend_reg_t reg) {
    ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context;
    return ctx->devices.size();
}
3374

3375
3376
3377
3378
static ggml_backend_dev_t ggml_backend_cuda_reg_get_device(ggml_backend_reg_t reg, size_t index) {
    ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context;
    GGML_ASSERT(index < ctx->devices.size());
    return ctx->devices[index];
3379
3380
}

3381
3382
3383
3384
3385
static ggml_backend_feature * ggml_backend_cuda_get_features(ggml_backend_reg_t reg) {
    static std::vector<ggml_backend_feature> features = []() {
        std::vector<ggml_backend_feature> features;
    #define _STRINGIFY(...) #__VA_ARGS__
    #define STRINGIFY(...) _STRINGIFY(__VA_ARGS__)
3386

3387
3388
3389
    #ifdef __CUDA_ARCH_LIST__
        features.push_back({ "ARCHS", STRINGIFY(__CUDA_ARCH_LIST__) });
    #endif
3390

3391
3392
3393
    #ifdef GGML_CUDA_FORCE_MMQ
        features.push_back({ "FORCE_MMQ", "1" });
    #endif
3394

3395
3396
3397
    #ifdef GGML_CUDA_FORCE_CUBLAS
        features.push_back({ "FORCE_CUBLAS", "1" });
    #endif
3398

3399
    #ifndef GGML_USE_VMM
3400
3401
        features.push_back({ "NO_VMM", "1" });
    #endif
3402

3403
3404
3405
    #ifdef GGML_CUDA_NO_PEER_COPY
        features.push_back({ "NO_PEER_COPY", "1" });
    #endif
3406

3407
3408
3409
    #ifdef GGML_CUDA_F16
        features.push_back({ "F16", "1" });
    #endif
3410

3411
3412
3413
    #ifdef GGML_CUDA_USE_GRAPHS
        features.push_back({ "USE_GRAPHS", "1" });
    #endif
3414

3415
3416
3417
    #ifdef GGML_CUDA_PEER_MAX_BATCH_SIZE
        features.push_back({ "PEER_MAX_BATCH_SIZE", STRINGIFY(GGML_CUDA_PEER_MAX_BATCH_SIZE) });
    #endif
3418

3419
3420
3421
    #ifdef GGML_CUDA_FA_ALL_QUANTS
        features.push_back({ "FA_ALL_QUANTS", "1" });
    #endif
3422

3423
3424
    #undef _STRINGIFY
    #undef STRINGIFY
3425

3426
3427
3428
3429
3430
3431
3432
3433
        features.push_back({ nullptr, nullptr });

        return features;
    }();

    return features.data();

    GGML_UNUSED(reg);
3434
3435
}

3436
3437
3438
3439
static void * ggml_backend_cuda_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
    GGML_UNUSED(reg);
    if (strcmp(name, "ggml_backend_split_buffer_type") == 0) {
        return (void *)ggml_backend_cuda_split_buffer_type;
3440
    }
3441
3442
3443
3444
3445
    if (strcmp(name, "ggml_backend_register_host_buffer") == 0) {
        return (void *)ggml_backend_cuda_register_host_buffer;
    }
    if (strcmp(name, "ggml_backend_unregister_host_buffer") == 0) {
        return (void *)ggml_backend_cuda_unregister_host_buffer;
3446
    }
3447
3448
3449
3450
    if (strcmp(name, "ggml_backend_get_features") == 0) {
        return (void *)ggml_backend_cuda_get_features;
    }
    return nullptr;
3451
3452
}

3453
3454
3455
static const ggml_backend_reg_i ggml_backend_cuda_reg_interface = {
    /* .get_name          = */ ggml_backend_cuda_reg_get_name,
    /* .get_device_count  = */ ggml_backend_cuda_reg_get_device_count,
3456
    /* .get_device        = */ ggml_backend_cuda_reg_get_device,
3457
3458
3459
    /* .get_proc_address  = */ ggml_backend_cuda_reg_get_proc_address,
};

3460
// backend registry
3461
3462
3463
ggml_backend_reg_t ggml_backend_cuda_reg() {
    static ggml_backend_reg reg;
    static bool initialized = false;
3464

3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
    {
        static std::mutex mutex;
        std::lock_guard<std::mutex> lock(mutex);
        if (!initialized) {
            ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;

            for (int i = 0; i < ggml_cuda_info().device_count; i++) {
                ggml_backend_cuda_device_context * dev_ctx = new ggml_backend_cuda_device_context;
                dev_ctx->device = i;
                dev_ctx->name = GGML_CUDA_NAME + std::to_string(i);

                ggml_cuda_set_device(i);
                cudaDeviceProp prop;
                CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
                dev_ctx->description = prop.name;

3481
                #if !defined(GGML_USE_HIP)
3482
3483
                char id[64];
                snprintf(id, sizeof(id),
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
                    "GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
                    (unsigned char)prop.uuid.bytes[0],
                    (unsigned char)prop.uuid.bytes[1],
                    (unsigned char)prop.uuid.bytes[2],
                    (unsigned char)prop.uuid.bytes[3],
                    (unsigned char)prop.uuid.bytes[4],
                    (unsigned char)prop.uuid.bytes[5],
                    (unsigned char)prop.uuid.bytes[6],
                    (unsigned char)prop.uuid.bytes[7],
                    (unsigned char)prop.uuid.bytes[8],
                    (unsigned char)prop.uuid.bytes[9],
                    (unsigned char)prop.uuid.bytes[10],
                    (unsigned char)prop.uuid.bytes[11],
                    (unsigned char)prop.uuid.bytes[12],
                    (unsigned char)prop.uuid.bytes[13],
                    (unsigned char)prop.uuid.bytes[14],
                    (unsigned char)prop.uuid.bytes[15]
                  );
3502
                dev_ctx->id = id;
3503
                #else
3504
3505
3506
3507
3508
3509
3510
                #ifdef _WIN32
                char id[16];
                snprintf(id, sizeof(id), "%d", i);
                dev_ctx->id = id;
                #else
                dev_ctx->id = "GPU-" + std::string(prop.uuid.bytes, 16);
                #endif
3511
3512
                #endif

3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
                ggml_backend_dev_t dev = new ggml_backend_device {
                    /* .iface   = */ ggml_backend_cuda_device_interface,
                    /* .reg     = */ &reg,
                    /* .context = */ dev_ctx
                };
                ctx->devices.push_back(dev);
            }

            reg = ggml_backend_reg {
                /* .api_version = */ GGML_BACKEND_API_VERSION,
                /* .iface       = */ ggml_backend_cuda_reg_interface,
                /* .context     = */ ctx
            };
        }

        initialized = true;
    }

    return &reg;
3532
3533
}

3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
ggml_backend_t ggml_backend_cuda_init(int device) {
    if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
        GGML_LOG_ERROR("%s: invalid device %d\n", __func__, device);
        return nullptr;
    }

    ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
    if (ctx == nullptr) {
        GGML_LOG_ERROR("%s: failed to allocate context\n", __func__);
        return nullptr;
3544
    }
3545
3546
3547
3548
3549
3550
3551
3552
3553

    ggml_backend_t cuda_backend = new ggml_backend {
        /* .guid      = */ ggml_backend_cuda_guid(),
        /* .interface = */ ggml_backend_cuda_interface,
        /* .device    = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), device),
        /* .context   = */ ctx,
    };

    return cuda_backend;
3554
}
3555
3556

GGML_BACKEND_DL_IMPL(ggml_backend_cuda_reg)