0019-metal-add-mean-kernel-14267.patch 6.92 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Georgi Gerganov <ggerganov@gmail.com>
Date: Thu, 19 Jun 2025 08:05:21 +0300
Subject: [PATCH] metal : add mean kernel (#14267)

* metal : add mean kernel

ggml-ci

* cont : dedup implementation

ggml-ci
---
 ggml/src/ggml-metal/ggml-metal.m     | 33 ++++++++++++++++---
 ggml/src/ggml-metal/ggml-metal.metal | 48 ++++++++++++++++++++++------
 2 files changed, 67 insertions(+), 14 deletions(-)

diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
19
index a9eeebc6..110c9ece 100644
Michael Yang's avatar
Michael Yang committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -489,6 +489,7 @@ enum ggml_metal_kernel_type {
     GGML_METAL_KERNEL_TYPE_COS,
     GGML_METAL_KERNEL_TYPE_NEG,
     GGML_METAL_KERNEL_TYPE_SUM_ROWS,
+    GGML_METAL_KERNEL_TYPE_MEAN,
     GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
     GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
     GGML_METAL_KERNEL_TYPE_ARGMAX,
@@ -1436,6 +1437,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS,                             cos,                             true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG,                             neg,                             true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS,                        sum_rows,                        true);
+        GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MEAN,                            mean,                            true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX,                          argmax,                          true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,                 pool_2d_avg_f32,                 true);
         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,                 pool_2d_max_f32,                 true);
@@ -1634,6 +1636,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
         case GGML_OP_LOG:
             return false; // TODO: implement
         case GGML_OP_SUM_ROWS:
+        case GGML_OP_MEAN:
         case GGML_OP_SOFT_MAX:
         case GGML_OP_GROUP_NORM:
             return has_simdgroup_reduction && ggml_is_contiguous(op->src[0]);
@@ -2362,11 +2365,30 @@ static bool ggml_metal_encode_node(
                 [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
             } break;
         case GGML_OP_SUM_ROWS:
+        case GGML_OP_MEAN:
             {
                 GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
 
-                id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
+                id<MTLComputePipelineState> pipeline = nil;
+
+                switch (dst->op) {
+                    case GGML_OP_SUM_ROWS:
+                        pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
+                        break;
+                    case GGML_OP_MEAN:
+                        pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MEAN].pipeline;
+                        break;
+                    default:
+                        GGML_ABORT("fatal error");
+                }
+
+                int nth = 32; // SIMD width
+
+                while (nth < ne00 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
+                    nth *= 2;
+                }
 
+                nth = MIN(nth, ne00);
 
                 ggml_metal_kargs_sum_rows args = {
                    /*.ne00 =*/ ne00,
@@ -2396,11 +2418,12 @@ static bool ggml_metal_encode_node(
                 };
 
                 [encoder setComputePipelineState:pipeline];
-                [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
-                [encoder setBytes:&args length:sizeof(args) atIndex:2];
+                [encoder setBytes:&args length:sizeof(args) atIndex:0];
+                [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
+                [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
+                [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
 
-                [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
+                [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
             } break;
         case GGML_OP_SOFT_MAX:
             {
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
index 9cfddf45..08e8d807 100644
--- a/ggml/src/ggml-metal/ggml-metal.metal
+++ b/ggml/src/ggml-metal/ggml-metal.metal
@@ -956,31 +956,61 @@ kernel void kernel_neg(
     dst[tpig] = -src0[tpig];
 }
 
+template <bool norm>
 kernel void kernel_sum_rows(
+        constant ggml_metal_kargs_sum_rows & args,
         device const float * src0,
         device       float * dst,
-        constant ggml_metal_kargs_sum_rows & args,
-        uint3 tpig[[thread_position_in_grid]]) {
-    int64_t i3 = tpig.z;
-    int64_t i2 = tpig.y;
-    int64_t i1 = tpig.x;
+        threadgroup  float * shmem_f32 [[threadgroup(0)]],
+        uint3   tgpig[[threadgroup_position_in_grid]],
+        ushort3 tpitg[[thread_position_in_threadgroup]],
+        ushort  sgitg[[simdgroup_index_in_threadgroup]],
+        ushort  tiisg[[thread_index_in_simdgroup]],
+        ushort3   ntg[[threads_per_threadgroup]]) {
+    int64_t i3 = tgpig.z;
+    int64_t i2 = tgpig.y;
+    int64_t i1 = tgpig.x;
 
     if (i3 >= args.ne03 || i2 >= args.ne02 || i1 >= args.ne01) {
         return;
     }
 
+    if (sgitg == 0) {
+        shmem_f32[tiisg] = 0.0f;
+    }
+
     device const float * src_row = (device const float *) ((device const char *) src0 + i1*args.nb01 + i2*args.nb02 + i3*args.nb03);
     device       float * dst_row = (device       float *) ((device       char *) dst  + i1*args.nb1  + i2*args.nb2  + i3*args.nb3);
 
-    float row_sum = 0;
+    float sumf = 0;
 
-    for (int64_t i0 = 0; i0 < args.ne00; i0++) {
-        row_sum += src_row[i0];
+    for (int64_t i0 = tpitg.x; i0 < args.ne00; i0 += ntg.x) {
+        sumf += src_row[i0];
     }
 
-    dst_row[0] = row_sum;
+    sumf = simd_sum(sumf);
+
+    threadgroup_barrier(mem_flags::mem_threadgroup);
+
+    if (tiisg == 0) {
+        shmem_f32[sgitg] = sumf;
+    }
+
+    threadgroup_barrier(mem_flags::mem_threadgroup);
+
+    sumf = shmem_f32[tiisg];
+    sumf = simd_sum(sumf);
+
+    if (tpitg.x == 0) {
+        dst_row[0] = norm ? sumf / args.ne00 : sumf;
+    }
 }
 
+typedef decltype(kernel_sum_rows<false>) kernel_sum_rows_t;
+
+template [[host_name("kernel_sum_rows")]] kernel kernel_sum_rows_t kernel_sum_rows<false>;
+template [[host_name("kernel_mean")]]     kernel kernel_sum_rows_t kernel_sum_rows<true>;
+
 template<typename T>
 kernel void kernel_soft_max(
         device const  char * src0,