llama-context.cpp 91.4 KB
Newer Older
1
2
#include "llama-context.h"

3
#include "llama-impl.h"
4
#include "llama-io.h"
5
#include "llama-mmap.h"
6
7
#include "llama-model.h"
#include "llama-kv-cache.h"
8

9
10
11
#include <cassert>
#include <cstring>
#include <stdexcept>
12
#include <cinttypes>
13
#include <cmath>
14

15
16
17
//
// llama_context
//
18

19
20
21
22
23
llama_context::llama_context(
        const llama_model & model,
              llama_context_params params) :
    model(model) {
    LLAMA_LOG_INFO("%s: constructing llama_context\n", __func__);
24

25
26
    t_start_us = model.t_start_us;
    t_load_us  = model.t_load_us;
27

28
    const auto & hparams = model.hparams;
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
    cparams.n_seq_max        = std::max(1u, params.n_seq_max);
    cparams.n_threads        = params.n_threads;
    cparams.n_threads_batch  = params.n_threads_batch;
    cparams.yarn_ext_factor  = params.yarn_ext_factor;
    cparams.yarn_attn_factor = params.yarn_attn_factor;
    cparams.yarn_beta_fast   = params.yarn_beta_fast;
    cparams.yarn_beta_slow   = params.yarn_beta_slow;
    cparams.defrag_thold     = params.defrag_thold;
    cparams.embeddings       = params.embeddings;
    cparams.offload_kqv      = params.offload_kqv;
    cparams.flash_attn       = params.flash_attn;
    cparams.no_perf          = params.no_perf;
    cparams.pooling_type     = params.pooling_type;
    cparams.warmup           = false;
44

45
46
47
    cparams.n_ctx            = params.n_ctx           == 0    ? hparams.n_ctx_train           : params.n_ctx;
    cparams.rope_freq_base   = params.rope_freq_base  == 0.0f ? hparams.rope_freq_base_train  : params.rope_freq_base;
    cparams.rope_freq_scale  = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
48

49
50
51
    cparams.n_ctx_orig_yarn  = params.yarn_orig_ctx    != 0 ? params.yarn_orig_ctx    :
                               hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
                                                              hparams.n_ctx_train;
52

53
54
    cparams.cb_eval           = params.cb_eval;
    cparams.cb_eval_user_data = params.cb_eval_user_data;
55

56
57
58
    auto rope_scaling_type = params.rope_scaling_type;
    if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
        rope_scaling_type = hparams.rope_scaling_type_train;
59
60
    }

61
62
    if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
        cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
63
64
    }

65
66
    if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
        cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
67
68
    }

69
    cparams.yarn_attn_factor *= hparams.rope_attn_factor;
70

71
72
73
74
75
    if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
        if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
            cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
        } else {
            cparams.pooling_type = hparams.pooling_type;
76
77
78
        }
    }

79
80
81
82
    if (params.attention_type == LLAMA_ATTENTION_TYPE_UNSPECIFIED) {
        cparams.causal_attn = hparams.causal_attn;
    } else {
        cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL;
83
84
    }

85
86
    // with causal attention, the batch size is limited by the context size
    cparams.n_batch = cparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
87

88
89
90
91
92
93
94
95
    // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
    // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
    // ref: https://github.com/ggerganov/llama.cpp/pull/5021
    // TODO: this padding is not needed for the cache-less context so we should probably move it to llama_context_kv_self
    if (cparams.n_batch < GGML_KQ_MASK_PAD) {
        LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
        cparams.n_batch = GGML_KQ_MASK_PAD;
    }
96

97
    cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
98

99
    const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
100

101
102
103
104
105
106
107
108
109
    LLAMA_LOG_INFO("%s: n_seq_max     = %u\n",   __func__, cparams.n_seq_max);
    LLAMA_LOG_INFO("%s: n_ctx         = %u\n",   __func__, cparams.n_ctx);
    LLAMA_LOG_INFO("%s: n_ctx_per_seq = %u\n",   __func__, n_ctx_per_seq);
    LLAMA_LOG_INFO("%s: n_batch       = %u\n",   __func__, cparams.n_batch);
    LLAMA_LOG_INFO("%s: n_ubatch      = %u\n",   __func__, cparams.n_ubatch);
    LLAMA_LOG_INFO("%s: causal_attn   = %d\n",   __func__, cparams.causal_attn);
    LLAMA_LOG_INFO("%s: flash_attn    = %d\n",   __func__, cparams.flash_attn);
    LLAMA_LOG_INFO("%s: freq_base     = %.1f\n", __func__, cparams.rope_freq_base);
    LLAMA_LOG_INFO("%s: freq_scale    = %g\n",   __func__, cparams.rope_freq_scale);
110

111
112
113
114
    if (n_ctx_per_seq < hparams.n_ctx_train) {
        LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) < n_ctx_train (%u) -- the full capacity of the model will not be utilized\n",
                __func__, n_ctx_per_seq, hparams.n_ctx_train);
    }
115

116
117
118
119
    if (n_ctx_per_seq > hparams.n_ctx_train) {
        LLAMA_LOG_WARN("%s: n_ctx_pre_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n",
                __func__, n_ctx_per_seq, hparams.n_ctx_train);
    }
120

121
    logits_all = params.logits_all;
122

123
124
125
126
127
128
    if (!hparams.vocab_only) {
        // GPU backends
        for (auto * dev : model.devices) {
            ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
            if (backend == nullptr) {
                throw std::runtime_error(format("failed to initialize %s backend", ggml_backend_dev_name(dev)));
129
            }
130
131
            backends.emplace_back(backend);
        }
132

133
134
135
136
137
138
139
140
141
        // add ACCEL backends (such as BLAS)
        for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
            ggml_backend_dev_t dev = ggml_backend_dev_get(i);
            if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
                ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
                if (backend == nullptr) {
                    throw std::runtime_error(format("failed to initialize %s backend", ggml_backend_dev_name(dev)));
                }
                backends.emplace_back(backend);
142
            }
143
        }
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        // add CPU backend
        backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
        if (backend_cpu == nullptr) {
            throw std::runtime_error("failed to initialize CPU backend");
        }
        backends.emplace_back(backend_cpu);

        // create a list of the set_n_threads functions in the backends
        for (auto & backend : backends) {
            ggml_backend_dev_t dev = ggml_backend_get_device(backend.get());
            ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
            if (reg) {
                auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
                if (ggml_backend_set_n_threads_fn) {
                    set_n_threads_fns.emplace_back(backend.get(), ggml_backend_set_n_threads_fn);
160
                }
161
162
            }
        }
163

164
        llama_set_abort_callback(this, params.abort_callback, params.abort_callback_data);
165

166
167
168
169
170
        // graph outputs buffer
        {
            // resized during inference when a batch uses more outputs
            if ((uint32_t) output_reserve(params.n_seq_max) < params.n_seq_max) {
                throw std::runtime_error("failed to reserve initial output buffer");
171
172
            }

173
174
175
            LLAMA_LOG_INFO("%s: %10s  output buffer size = %8.2f MiB\n", __func__,
                    ggml_backend_buffer_name    (buf_output.get()),
                    ggml_backend_buffer_get_size(buf_output.get()) / 1024.0 / 1024.0);
176
177
178
        }
    }

179
180
181
182
    // init the memory module
    // TODO: for now, always create a unified KV cache
    if (!hparams.vocab_only) {
        kv_self.reset(static_cast<llama_kv_cache_unified *>(model.create_memory()));
183

184
        LLAMA_LOG_DEBUG("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
185

186
        cparams.n_ctx = GGML_PAD(cparams.n_ctx, kv_self->get_padding(cparams));
187

188
        LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
189

190
191
192
        uint32_t kv_size = cparams.n_ctx;
        ggml_type type_k = params.type_k;
        ggml_type type_v = params.type_v;
193

194
195
196
197
198
199
        if (llama_model_is_recurrent(&model)) {
            // Mamba needs at least as many KV cells as there are sequences kept at any time
            kv_size = std::max((uint32_t) 1, params.n_seq_max);
            // it's probably best to keep as much precision as possible for the states
            type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
            type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
200
201
        }

202
203
204
205
206
        GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
        GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);

        if (!kv_self->init(model, cparams, type_k, type_v, kv_size, cparams.offload_kqv)) {
            throw std::runtime_error("failed to initialize self-attention cache");
207
208
        }

209
210
211
        {
            const size_t memory_size_k = kv_self->size_k_bytes();
            const size_t memory_size_v = kv_self->size_v_bytes();
212

213
214
215
216
            LLAMA_LOG_INFO("%s: KV self size  = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
                    (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
                    ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
                    ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
217
218
219
        }
    }

220
221
222
    // init backends
    if (!hparams.vocab_only) {
        LLAMA_LOG_DEBUG("%s: enumerating backends\n", __func__);
223

224
225
        backend_buft.clear();
        backend_ptrs.clear();
226

227
228
229
        for (auto & backend : backends) {
            auto * buft = ggml_backend_get_default_buffer_type(backend.get());
            auto backend_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get()));
230

231
232
233
234
235
236
            if (backend_type == GGML_BACKEND_DEVICE_TYPE_CPU && !model.devices.empty()) {
                // use the host buffer of the first device CPU for faster transfer of the intermediate state
                auto * dev = model.devices[0];
                auto * host_buft = ggml_backend_dev_host_buffer_type(dev);
                if (host_buft) {
                    buft = host_buft;
237
238
239
                }
            }

240
241
242
            backend_buft.push_back(buft);
            backend_ptrs.push_back(backend.get());
        }
243

244
        LLAMA_LOG_DEBUG("%s: backend_ptrs.size() = %zu\n", __func__, backend_ptrs.size());
245

246
        const size_t max_nodes = this->graph_max_nodes();
247

248
        LLAMA_LOG_DEBUG("%s: max_nodes = %zu\n", __func__, max_nodes);
249

250
251
        // buffer used to store the computation graph and the tensor meta data
        buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
252

253
254
255
256
257
258
259
260
        // TODO: move these checks to ggml_backend_sched
        // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
        bool pipeline_parallel =
            model.n_devices() > 1 &&
            model.params.n_gpu_layers > (int) model.hparams.n_layer &&
            model.params.split_mode == LLAMA_SPLIT_MODE_LAYER &&
            cparams.offload_kqv &&
            !model.has_tensor_overrides();
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        // pipeline parallelism requires support for async compute and events in all devices
        if (pipeline_parallel) {
            for (auto & backend : backends) {
                auto dev_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get()));
                if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU) {
                    // ignore CPU backend
                    continue;
                }
                auto * dev = ggml_backend_get_device(backend.get());
                ggml_backend_dev_props props;
                ggml_backend_dev_get_props(dev, &props);
                if (!props.caps.async || !props.caps.events) {
                    // device does not support async compute or events
                    pipeline_parallel = false;
                    break;
277
278
279
280
                }
            }
        }

281
282
283
284
        sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, pipeline_parallel));

        if (pipeline_parallel) {
            LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(sched.get()));
285
286
287
        }
    }

288
289
290
291
    // reserve worst-case graph
    if (!hparams.vocab_only) {
        const uint32_t n_seqs = 1; // TODO: worst-case number of sequences
        const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
292

293
        llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
294

295
296
297
        // restore later
        // TODO: something cleaner
        const auto n_outputs_save = n_outputs;
298

299
        LLAMA_LOG_DEBUG("%s: worst-case: n_tokens = %d, n_seqs = %d, n_outputs = %d\n", __func__, n_tokens, n_seqs, n_outputs);
300

301
302
        int n_splits_pp = -1;
        int n_nodes_pp  = -1;
303

304
305
        int n_splits_tg = -1;
        int n_nodes_tg  = -1;
306

307
308
        // simulate full KV cache
        kv_self->n = kv_self->size;
309

310
        cross.v_embd.clear();
311

312
313
314
        // reserve pp graph first so that buffers are only allocated once
        {
            llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
315

316
317
            // max number of outputs
            n_outputs = ubatch_pp.n_tokens;
318

319
            LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_pp.n_tokens, ubatch_pp.n_seqs);
320

321
322
            auto * gf = graph_init();
            graph_build(ctx_compute.get(), gf, ubatch_pp, LLM_GRAPH_TYPE_DEFAULT);
323

324
325
            if (!ggml_backend_sched_reserve(sched.get(), gf)) {
                throw std::runtime_error("failed to allocate compute pp buffers");
326
327
            }

328
329
330
            n_splits_pp = ggml_backend_sched_get_n_splits(sched.get());
            n_nodes_pp  = ggml_graph_n_nodes(gf);
        }
331

332
333
334
        // reserve with tg graph to get the number of splits and nodes
        {
            llama_ubatch ubatch_tg = { true, 1, 1, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
335

336
            n_outputs = ubatch_tg.n_tokens;
337

338
            LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_tg.n_tokens, ubatch_tg.n_seqs);
339

340
341
            auto * gf = graph_init();
            graph_build(ctx_compute.get(), gf, ubatch_tg, LLM_GRAPH_TYPE_DEFAULT);
342

343
344
            if (!ggml_backend_sched_reserve(sched.get(), gf)) {
                throw std::runtime_error("failed to allocate compute tg buffers");
345
346
            }

347
348
            n_splits_tg = ggml_backend_sched_get_n_splits(sched.get());
            n_nodes_tg  = ggml_graph_n_nodes(gf);
349
350
        }

351
352
353
        // reserve again with pp graph to avoid ggml-alloc reallocations during inference
        {
            llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
354

355
            n_outputs = ubatch_pp.n_tokens;
356

357
            LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_pp.n_tokens, ubatch_pp.n_seqs);
358

359
360
            auto * gf = graph_init();
            graph_build(ctx_compute.get(), gf, ubatch_pp, LLM_GRAPH_TYPE_DEFAULT);
361

362
363
364
365
            if (!ggml_backend_sched_reserve(sched.get(), gf)) {
                throw std::runtime_error("failed to allocate compute pp buffers");
            }
        }
366

367
        n_outputs = n_outputs_save;
368

369
370
371
372
373
374
375
376
377
        for (size_t i = 0; i < backend_ptrs.size(); ++i) {
            ggml_backend_t             backend = backend_ptrs[i];
            ggml_backend_buffer_type_t buft    = backend_buft[i];
            size_t size = ggml_backend_sched_get_buffer_size(sched.get(), backend);
            if (size > 1) {
                LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
                        ggml_backend_buft_name(buft),
                        size / 1024.0 / 1024.0);
            }
378
379
        }

380
381
382
383
        if (n_nodes_pp == n_nodes_tg) {
            LLAMA_LOG_INFO("%s: graph nodes  = %d\n", __func__, n_nodes_pp);
        } else {
            LLAMA_LOG_INFO("%s: graph nodes  = %d (with bs=%d), %d (with bs=1)\n", __func__, n_nodes_pp, n_tokens, n_nodes_tg);
384
        }
385
386
387
388
389

        if (n_splits_pp == n_splits_tg) {
            LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits_pp);
        } else {
            LLAMA_LOG_INFO("%s: graph splits = %d (with bs=%d), %d (with bs=1)\n", __func__, n_splits_pp, n_tokens, n_splits_tg);
390
391
392
393
        }
    }
}

394
llama_context::~llama_context() = default;
395

396
397
void llama_context::synchronize() {
    ggml_backend_sched_synchronize(sched.get());
398

399
400
401
402
403
404
405
406
    // FIXME: if multiple single tokens are evaluated without a synchronization,
    // the stats will be added to the prompt evaluation stats
    // this should only happen when using batch size 1 to evaluate a batch

    // add the evaluation to the stats
    if (n_queued_tokens == 1) {
        if (!cparams.no_perf) {
            t_eval_us += ggml_time_us() - t_compute_start_us;
407
        }
408
409
410
411
        n_eval++;
    } else if (n_queued_tokens > 1) {
        if (!cparams.no_perf) {
            t_p_eval_us += ggml_time_us() - t_compute_start_us;
412
        }
413
        n_p_eval += n_queued_tokens;
414
415
    }

416
417
418
419
420
    // get a more accurate load time, upon first eval
    if (n_queued_tokens > 0 && !has_evaluated_once) {
        t_load_us = ggml_time_us() - t_start_us;
        has_evaluated_once = true;
    }
421

422
423
    n_queued_tokens = 0;
    t_compute_start_us = 0;
424
425
}

426
427
const llama_model & llama_context::get_model() const {
    return model;
428
429
}

430
431
uint32_t llama_context::n_ctx() const {
    return cparams.n_ctx;
432
433
}

434
435
uint32_t llama_context::n_ctx_per_seq() const {
    return cparams.n_ctx / cparams.n_seq_max;
436
437
}

438
439
uint32_t llama_context::n_batch() const {
    return cparams.n_batch;
440
441
}

442
443
uint32_t llama_context::n_ubatch() const {
    return cparams.n_ubatch;
444
445
}

446
447
uint32_t llama_context::n_seq_max() const {
    return cparams.n_seq_max;
448
449
}

450
451
uint32_t llama_context::n_threads() const {
    return cparams.n_threads;
452
453
}

454
455
uint32_t llama_context::n_threads_batch() const {
    return cparams.n_threads_batch;
456
457
}

458
459
llama_kv_cache * llama_context::get_kv_self() {
    return kv_self.get();
460
461
}

462
463
const llama_kv_cache * llama_context::get_kv_self() const {
    return kv_self.get();
464
465
}

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
ggml_tensor * llama_context::build_rope_shift(
        ggml_context * ctx0,
        ggml_tensor * cur,
        ggml_tensor * shift,
        ggml_tensor * factors,
              float   freq_base,
              float   freq_scale,
        ggml_backend_buffer * bbuf) const {
    const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;

    const auto & yarn_ext_factor  = cparams.yarn_ext_factor;
    const auto & yarn_beta_fast   = cparams.yarn_beta_fast;
    const auto & yarn_beta_slow   = cparams.yarn_beta_slow;

    const auto & hparams = model.hparams;

    const auto & n_rot     = hparams.n_rot;
    const auto & rope_type = hparams.rope_type;

485
486
487
488
    // See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
    // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
    const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor;

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    ggml_tensor * tmp;

    if (ggml_is_quantized(cur->type)) {
        // dequantize to f32 -> RoPE -> quantize back
        tmp = ggml_cast(ctx0, cur, GGML_TYPE_F32);

        if (bbuf) {
            for (const auto & backend : backends) {
                // Figure out which backend KV cache belongs to
                if (ggml_backend_supports_buft(backend.get(), ggml_backend_buffer_get_type(bbuf))) {
                    ggml_backend_sched_set_tensor_backend(sched.get(), tmp, backend.get());
                    break;
                }
            }
        }
504

505
506
507
        tmp = ggml_rope_ext_inplace(ctx0, tmp,
                shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
508

509
510
511
512
513
514
        tmp = ggml_cpy(ctx0, tmp, cur);
    } else {
        // we rotate only the first n_rot dimensions
        tmp = ggml_rope_ext_inplace(ctx0, cur,
                shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
515
516
    }

517
    return tmp;
518
519
}

520
521
522
523
class llm_graph_input_k_shift : public llm_graph_input_i {
public:
    llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
    virtual ~llm_graph_input_k_shift() = default;
524

525
    void set_input(const llama_ubatch * ubatch) override;
526

527
    ggml_tensor * k_shift; // I32 [kv_size]
528

529
530
    const llama_kv_cache_unified * kv_self;
};
531

532
533
534
535
536
537
538
539
540
541
void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
    GGML_UNUSED(ubatch);

    if (k_shift) {
        assert(ggml_backend_buffer_is_host(k_shift->buffer));

        int32_t * data = (int32_t *) k_shift->data;

        for (uint32_t i = 0; i < kv_self->size; ++i) {
            data[i] = kv_self->cells[i].delta;
542
543
        }
    }
544
}
545

546
547
548
549
llm_graph_result_ptr llama_context::build_kv_self_shift(
        ggml_context * ctx0,
        ggml_cgraph * gf) const {
    auto res = std::make_unique<llm_graph_result>();
550

551
    const auto & hparams = model.hparams;
552

553
    const auto & n_layer = hparams.n_layer;
554

555
556
    const auto & n_embd_head_k = hparams.n_embd_head_k;
  //const auto & n_embd_head_v = hparams.n_embd_head_v;
557

558
    //GGML_ASSERT(kv_self->size == n_ctx);
559

560
    auto inp = std::make_unique<llm_graph_input_k_shift>(kv_self.get());
561

562
563
    inp->k_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_ctx);
    ggml_set_input(inp->k_shift);
564

565
566
567
    for (uint32_t il = 0; il < n_layer; ++il) {
        const int64_t n_head_kv    = hparams.n_head_kv(il);
        const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
568

569
        const bool is_swa = hparams.is_swa(il);
570

571
572
573
574
        // note: the swa rope params could become part of the cparams in the future
        //       if we decide to make them configurable, like the non-sliding ones
        const float freq_base_l  = is_swa ? hparams.rope_freq_base_train_swa  : cparams.rope_freq_base;
        const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
575

576
        ggml_tensor * rope_factors = kv_self->cbs.get_rope_factors(n_ctx_per_seq(), il);
577

578
579
580
581
582
583
        ggml_tensor * k =
            ggml_view_3d(ctx0, kv_self->k_l[il],
                n_embd_head_k, n_head_kv, kv_self->size,
                ggml_row_size(kv_self->k_l[il]->type, n_embd_head_k),
                ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
                0);
584

585
586
587
588
        ggml_tensor * cur = build_rope_shift(ctx0, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l, kv_self->k_l[il]->buffer);

        ggml_build_forward_expand(gf, cur);
    }
589

590
591
592
    res->add_input(std::move(inp));

    return res;
593
594
}

595
596
597
598
599
llm_graph_result_ptr llama_context::build_kv_self_defrag(
        ggml_context * ctx0,
        ggml_cgraph * gf,
        const std::vector<struct llama_kv_defrag_move> & moves) const {
    auto res = std::make_unique<llm_graph_result>();
600

601
    const auto & hparams = model.hparams;
602

603
604
605
606
607
608
609
610
611
#if 0
    // CPU defrag
    //
    // TODO: optimizations are possible:
    //       - multiple threads
    //       - avoid copying to the host memory when already there
    //
    // likely not worth the effort, as we have ggml_graph based defrag
    //
612

613
614
    const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
    const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
615

616
    const uint32_t kv_size = size;
617

618
619
    std::vector<uint8_t> buf_k;
    std::vector<uint8_t> buf_v;
620

621
622
623
    for (uint32_t il = 0; il < n_layer; ++il) {
        const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
        const size_t k_size     = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
624

625
626
        const size_t v_size_el = ggml_type_size(v_l[il]->type);
        const size_t v_size    = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
627

628
629
        buf_k.resize(k_size);
        buf_v.resize(v_size);
630

631
632
        ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
        ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
633

634
635
636
637
        // batch move [i, i+nm) to [id, id+nm)
        // note: cells can move only to a lower index
        for (uint32_t i = 0; i < n_kv; ++i) {
            const uint32_t id = ids[i];
638

639
640
641
            if (i == id || id == n_kv) {
                continue;
            }
642

643
            uint32_t nm = 1;
644

645
646
647
            while (i + nm < n_kv && ids[i + nm] == id + nm) {
                nm++;
            }
648

649
650
651
652
653
654
655
            // move keys
            {
                const int64_t os =  i*k_size_row;
                const int64_t od = id*k_size_row;

                memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
            }
656

657
658
659
660
661
662
663
664
665
            // move values (note: they are transposed)
            {
                const int64_t os =  i;
                const int64_t od = id;

                for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                    memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
                }
            }
666

667
668
            i += nm - 1;
        }
669

670
671
        ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
        ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
672
    }
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
#else
    for (const auto & move : moves) {
        for (uint32_t il = 0; il < hparams.n_layer; ++il) { // NOLINT
            const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
            const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);

            ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self->k_l[il],
                    n_embd_k_gqa, move.len,
                    ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
                    ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa*move.src));

            ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self->k_l[il],
                    n_embd_k_gqa, move.len,
                    ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
                    ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa*move.dst));

            ggml_tensor * view_v_src;
            ggml_tensor * view_v_dst;

            if (cparams.flash_attn) {
                // NOTE: the V cache is not transposed when using flash attention
                view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il],
                        n_embd_v_gqa, move.len,
                        ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
                        ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa*move.src));

                view_v_dst = ggml_view_2d(ctx0, kv_self->v_l[il],
                        n_embd_v_gqa, move.len,
                        ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
                        ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa*move.dst));
            } else {
                view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il],
                        move.len, n_embd_v_gqa,
                        ggml_row_size(kv_self->v_l[il]->type, kv_self->size),
                        ggml_row_size(kv_self->v_l[il]->type, move.src));

                view_v_dst = ggml_view_2d(ctx0, kv_self->v_l[il],
                        move.len, n_embd_v_gqa,
                        ggml_row_size(kv_self->v_l[il]->type, kv_self->size),
                        ggml_row_size(kv_self->v_l[il]->type, move.dst));
            }
714

715
716
717
            ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
            ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
        }
718
    }
719
#endif
720

721
722
    return res;
}
723

724
725
void llama_context::kv_self_update() {
    auto & kv = kv_self;
726

727
728
729
730
    if (kv->has_shift) {
        if (!kv->get_can_shift()) {
            GGML_ABORT("The current context does not support K-shift");
        }
731

732
        LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
733

734
735
736
        // apply K-shift if needed
        if (model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
            ggml_backend_sched_reset(sched.get());
737

738
            auto * gf = graph_init();
739

740
            auto res = build_kv_self_shift(ctx_compute.get(), gf);
741

742
            ggml_backend_sched_alloc_graph(sched.get(), gf);
743

744
            res->set_inputs(nullptr);
745

746
            graph_compute(gf, false);
747
748
        }

749
750
        {
            kv->has_shift = false;
751

752
753
754
            for (uint32_t i = 0; i < kv->size; ++i) {
                kv->cells[i].delta = 0;
            }
755
756
757
        }
    }

758
759
760
761
762
763
764
765
766
    // defragment the KV cache if needed
    if (kv->do_defrag) {
        LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
        const uint32_t n_max_nodes = graph_max_nodes();
        const uint32_t max_moves = (n_max_nodes - 2*model.hparams.n_layer)/(6*model.hparams.n_layer);
        if (!kv->defrag_prepare(n_max_nodes)) {
            LLAMA_LOG_ERROR("%s: failed to prepare defragmentation\n", __func__);
            return;
        }
767

768
769
770
771
772
773
774
775
776
777
778
        for (std::size_t i = 0; i < kv_self->defrag_info.moves.size(); i += max_moves) {
            std::vector<struct llama_kv_defrag_move> chunk;
            auto end = std::min(i + max_moves, kv_self->defrag_info.moves.size());
            chunk.assign(kv_self->defrag_info.moves.begin() + i, kv_self->defrag_info.moves.begin() + end);

            ggml_backend_sched_reset(sched.get());
            auto * gf = graph_init();
            auto res = build_kv_self_defrag(ctx_compute.get(), gf, chunk);
            ggml_backend_sched_alloc_graph(sched.get(), gf);
            res->set_inputs(nullptr);
            graph_compute(gf, false);
779
        }
780
781

        kv->do_defrag = false;
782
    }
783
}
784

785
786
787
enum llama_pooling_type llama_context::pooling_type() const {
    return cparams.pooling_type;
}
788

789
790
791
float * llama_context::get_logits() {
    // reorder logits for backward compatibility
    output_reorder();
792

793
794
    return logits;
}
795

796
797
float * llama_context::get_logits_ith(int32_t i) {
    int32_t j = -1;
798

799
800
801
802
    try {
        if (logits == nullptr) {
            throw std::runtime_error("no logits");
        }
803

804
805
806
807
        if (i < 0) {
            j = n_outputs + i;
            if (j < 0) {
                throw std::runtime_error(format("negative index out of range [0, %d)", n_outputs));
808
            }
809
810
811
812
        } else if ((size_t) i >= output_ids.size()) {
            throw std::runtime_error(format("out of range [0, %zu)", output_ids.size()));
        } else {
            j = output_ids[i];
813
814
        }

815
816
817
818
819
820
821
        if (j < 0) {
            throw std::runtime_error(format("batch.logits[%d] != true", i));
        }
        if (j >= n_outputs) {
            // This should not happen
            throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, n_outputs));
        }
822

823
824
825
826
827
828
829
830
831
832
        return logits + j*model.hparams.n_vocab;
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
        GGML_ABORT("fatal error");
#else
        return nullptr;
#endif
    }
}
833

834
835
836
float * llama_context::get_embeddings() {
    // reorder embeddings for backward compatibility
    output_reorder();
837

838
839
    return embd;
}
840

841
842
float * llama_context::get_embeddings_ith(int32_t i) {
    int32_t j = -1;
843

844
845
846
847
    try {
        if (embd == nullptr) {
            throw std::runtime_error("no embeddings");
        }
848

849
850
851
852
        if (i < 0) {
            j = n_outputs + i;
            if (j < 0) {
                throw std::runtime_error(format("negative index out of range [0, %d)", n_outputs));
853
            }
854
855
856
857
858
859
860
861
862
863
864
865
        } else if ((size_t) i >= output_ids.size()) {
            throw std::runtime_error(format("out of range [0, %zu)", output_ids.size()));
        } else {
            j = output_ids[i];
        }

        if (j < 0) {
            throw std::runtime_error(format("batch.logits[%d] != true", i));
        }
        if (j >= n_outputs) {
            // This should not happen
            throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, n_outputs));
866
867
        }

868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
        return embd + j*model.hparams.n_embd;
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
        GGML_ABORT("fatal error");
#else
        return nullptr;
#endif
    }
}

float * llama_context::get_embeddings_seq(llama_seq_id seq_id) {
    auto it = embd_seq.find(seq_id);
    if (it == embd_seq.end()) {
        return nullptr;
    }
884

885
886
    return it->second.data();
}
887

888
889
890
891
void llama_context::attach_threadpool(
           ggml_threadpool_t threadpool,
           ggml_threadpool_t threadpool_batch) {
    LLAMA_LOG_DEBUG("%s: call\n", __func__);
892

893
894
895
    this->threadpool       = threadpool;
    this->threadpool_batch = threadpool_batch ? threadpool_batch : threadpool;
}
896

897
898
void llama_context::detach_threadpool() {
    LLAMA_LOG_DEBUG("%s: call\n", __func__);
899

900
901
902
    this->threadpool       = nullptr;
    this->threadpool_batch = nullptr;
}
903

904
905
void llama_context::set_n_threads(int32_t n_threads, int32_t n_threads_batch) {
    LLAMA_LOG_DEBUG("%s: n_threads = %d, n_threads_batch = %d\n", __func__, n_threads, n_threads_batch);
906

907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
    cparams.n_threads       = n_threads;
    cparams.n_threads_batch = n_threads_batch;
}

void llama_context::set_abort_callback(bool (*abort_callback)(void * data), void * abort_callback_data) {
    LLAMA_LOG_DEBUG("%s: call\n", __func__);

    this->abort_callback      = abort_callback;
    this->abort_callback_data = abort_callback_data;

    for (auto & backend : backends) {
        auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend.get()));
        auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback");
        if (set_abort_callback_fn) {
            set_abort_callback_fn(backend.get(), this->abort_callback, this->abort_callback_data);
922
923
        }
    }
924
}
925

926
927
void llama_context::set_embeddings(bool value) {
    LLAMA_LOG_DEBUG("%s: value = %d\n", __func__, value);
928

929
930
    cparams.embeddings = value;
}
931

932
933
934
935
936
void llama_context::set_causal_attn(bool value) {
    LLAMA_LOG_DEBUG("%s: value = %d\n", __func__, value);

    cparams.causal_attn = value;
}
937

938
939
void llama_context::set_warmup(bool value) {
    LLAMA_LOG_DEBUG("%s: value = %d\n", __func__, value);
940

941
942
    cparams.warmup = value;
}
943

944
945
946
void llama_context::set_cross_attn(bool value) {
    cparams.cross_attn = value;
}
947

948
949
950
951
void llama_context::set_adapter_lora(
            llama_adapter_lora * adapter,
            float scale) {
    LLAMA_LOG_DEBUG("%s: adapter = %p, scale = %f\n", __func__, (void *) adapter, scale);
952

953
954
    loras[adapter] = scale;
}
955

956
957
958
bool llama_context::rm_adapter_lora(
            llama_adapter_lora * adapter) {
    LLAMA_LOG_DEBUG("%s: adapter = %p\n", __func__, (void *) adapter);
959

960
961
962
963
    auto pos = loras.find(adapter);
    if (pos != loras.end()) {
        loras.erase(pos);
        return true;
964
965
    }

966
967
    return false;
}
968

969
970
void llama_context::clear_adapter_lora() {
    LLAMA_LOG_DEBUG("%s: call\n", __func__);
971

972
973
    loras.clear();
}
974

975
976
977
978
979
980
981
bool llama_context::apply_adapter_cvec(
            const float * data,
                 size_t   len,
                int32_t   n_embd,
                int32_t   il_start,
                int32_t   il_end) {
    LLAMA_LOG_DEBUG("%s: il_start = %d, il_end = %d\n", __func__, il_start, il_end);
982

983
984
    return cvec.apply(model, data, len, n_embd, il_start, il_end);
}
985

986
987
988
989
990
int llama_context::encode(llama_batch & inp_batch) {
    if (inp_batch.n_tokens == 0) {
        LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__);
        return -1;
    }
991

992
993
994
    // temporary allocate memory for the input batch if needed
    // TODO: this is incorrect for multiple sequences because pos_max() is the maximum across all sequences
    llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->pos_max() + 1);
995

996
997
    const llama_batch & batch = batch_allocr.batch;
    const int32_t n_tokens = batch.n_tokens;
998

999
    const auto & hparams = model.hparams;
1000

1001
    GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
1002

1003
1004
1005
1006
1007
1008
    if (batch.token) {
        for (int32_t i = 0; i < n_tokens; ++i) {
            if (batch.token[i] < 0 || (uint32_t) batch.token[i] >= model.vocab.n_tokens()) {
                LLAMA_LOG_ERROR("%s: invalid token[%d] = %d\n", __func__, i, batch.token[i]);
                return -1;
            }
1009
        }
1010
    }
1011

1012
1013
1014
1015
1016
    // micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
    GGML_ASSERT(cparams.n_ubatch >= (uint32_t) n_tokens && "encoder requires n_ubatch >= n_tokens");

    if (t_compute_start_us == 0) {
        t_compute_start_us = ggml_time_us();
1017
1018
    }

1019
    n_queued_tokens += n_tokens;
1020

1021
    const int64_t n_embd = hparams.n_embd;
1022

1023
    sbatch.from_batch(batch, batch.n_embd, /* simple_split */ true, /* logits_all */ true);
1024

1025
    const llama_ubatch ubatch = sbatch.split_simple(n_tokens);
1026

1027
1028
1029
1030
1031
    // reserve output buffer
    if (output_reserve(n_tokens) < n_tokens) {
        LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens);
        return -2;
    };
1032

1033
1034
1035
    for (int32_t i = 0; i < n_tokens; ++i) {
        output_ids[i] = i;
    }
1036

1037
    n_outputs = n_tokens;
1038

1039
    //batch_manager->prepare(ubatch);
1040

1041
1042
    ggml_backend_sched_reset(sched.get());
    ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
1043

1044
    const auto causal_attn_org = cparams.causal_attn;
1045

1046
1047
1048
1049
    // always use non-causal attention for encoder graphs
    // TODO: this is a tmp solution until we have a proper way to support enc-dec models
    //       ref: https://github.com/ggml-org/llama.cpp/pull/12181#issuecomment-2730451223
    cparams.causal_attn = false;
1050

1051
1052
    auto * gf = graph_init();
    auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_ENCODER);
1053

1054
    ggml_backend_sched_alloc_graph(sched.get(), gf);
1055

1056
    res->set_inputs(&ubatch);
1057

1058
    cparams.causal_attn = causal_attn_org;
1059

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
    const auto compute_status = graph_compute(gf, n_tokens > 1);
    switch (compute_status) {
        case GGML_STATUS_SUCCESS:
            break;
        case GGML_STATUS_ABORTED:
            return 2;
        case GGML_STATUS_ALLOC_FAILED:
            return -2;
        case GGML_STATUS_FAILED:
        default:
            return -3;
    }
1072

1073
    auto * t_embd = res->get_embd_pooled() ? res->get_embd_pooled() : res->get_embd();
1074

1075
1076
1077
1078
    // extract embeddings
    if (t_embd) {
        ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd);
        GGML_ASSERT(backend_embd != nullptr);
1079

1080
        GGML_ASSERT(embd != nullptr);
1081

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
        switch (cparams.pooling_type) {
            case LLAMA_POOLING_TYPE_NONE:
                {
                    // extract token embeddings
                    GGML_ASSERT(n_tokens*n_embd <= (int64_t) embd_size);
                    ggml_backend_tensor_get_async(backend_embd, t_embd, embd, 0, n_tokens*n_embd*sizeof(float));
                } break;
            case LLAMA_POOLING_TYPE_MEAN:
            case LLAMA_POOLING_TYPE_CLS:
            case LLAMA_POOLING_TYPE_LAST:
                {
                    // extract sequence embeddings
                    auto & embd_seq_out = embd_seq;
                    embd_seq_out.clear();
1096

1097
                    GGML_ASSERT(!ubatch.equal_seqs); // TODO: handle equal splits
1098

1099
1100
1101
1102
                    for (int32_t i = 0; i < n_tokens; i++) {
                        const llama_seq_id seq_id = ubatch.seq_id[i][0];
                        if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
                            continue;
1103
                        }
1104
1105
                        embd_seq_out[seq_id].resize(n_embd);
                        ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
1106
                    }
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
                } break;
            case LLAMA_POOLING_TYPE_RANK:
                {
                    // TODO: this likely should be the same logic as in llama_decoder_internal, but better to
                    //       wait for an encoder model that requires this pooling type in order to test it
                    //       https://github.com/ggerganov/llama.cpp/pull/9510
                    GGML_ABORT("RANK pooling not implemented yet");
                }
            case LLAMA_POOLING_TYPE_UNSPECIFIED:
                {
                    GGML_ABORT("unknown pooling type");
1118
1119
                }
        }
1120
1121
1122
1123
1124
    }

    // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
    // overlap with device computation.
    ggml_backend_sched_reset(sched.get());
1125

1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
    // TODO: hacky solution
    if (model.arch == LLM_ARCH_T5 && t_embd) {
        //cross.t_embd = t_embd;

        synchronize();

        cross.n_embd = t_embd->ne[0];
        cross.n_enc  = t_embd->ne[1];
        cross.v_embd.resize(cross.n_embd*cross.n_enc);
        memcpy(cross.v_embd.data(), embd, ggml_nbytes(t_embd));

        // remember the sequence ids used during the encoding - needed for cross attention later
        cross.seq_ids_enc.resize(n_tokens);
        for (int32_t i = 0; i < n_tokens; i++) {
            cross.seq_ids_enc[i].clear();
            for (int s = 0; s < ubatch.n_seq_id[i]; s++) {
                llama_seq_id seq_id = ubatch.seq_id[i][s];
                cross.seq_ids_enc[i].insert(seq_id);
1144
1145
            }
        }
1146
    }
1147

1148
1149
1150
1151
1152
1153
1154
    return 0;
}

int llama_context::decode(llama_batch & inp_batch) {
    if (inp_batch.n_tokens == 0) {
        LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__);
        return -1;
1155
1156
    }

1157
1158
1159
    // temporary allocate memory for the input batch if needed
    // TODO: this is incorrect for multiple sequences because pos_max() is the maximum across all sequences
    llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->pos_max() + 1);
1160

1161
    const llama_batch & batch = batch_allocr.batch;
1162

1163
    const auto & hparams = model.hparams;
1164

1165
    const int32_t n_vocab = hparams.n_vocab;
1166

1167
1168
1169
1170
    const int64_t n_tokens_all = batch.n_tokens;
    const int64_t n_embd       = hparams.n_embd;

    llama_kv_cache_guard kv_guard(kv_self.get());
1171

1172
1173
1174
1175
1176
1177
1178
    GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT

    if (batch.token) {
        for (int64_t i = 0; i < n_tokens_all; ++i) {
            if (batch.token[i] < 0 || (uint32_t) batch.token[i] >= model.vocab.n_tokens()) {
                LLAMA_LOG_ERROR("%s: invalid token[%" PRId64 "] = %d\n", __func__, i, batch.token[i]);
                throw std::runtime_error("invalid token");
1179
1180
            }
        }
1181
    }
1182

1183
    GGML_ASSERT(n_tokens_all <= cparams.n_batch);
1184

1185
    GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
1186

1187
1188
1189
1190
    if (t_compute_start_us == 0) {
        t_compute_start_us = ggml_time_us();
    }
    n_queued_tokens += n_tokens_all;
1191

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
    // this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
    const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;

    embd_seq.clear();

    int64_t n_outputs_all = 0;

    // count outputs
    if (batch.logits) {
        for (uint32_t i = 0; i < n_tokens_all; ++i) {
            n_outputs_all += batch.logits[i] != 0;
        }
    } else if (logits_all || embd_pooled) {
        n_outputs_all = n_tokens_all;
    } else {
        // keep last output only
        n_outputs_all = 1;
    }

    const bool logits_all = n_outputs_all == n_tokens_all;

    sbatch.from_batch(batch, batch.n_embd,
            /* simple_split */ !kv_self->recurrent,
            /* logits_all   */ logits_all);

    // reserve output buffer
    if (output_reserve(n_outputs_all) < n_outputs_all) {
        LLAMA_LOG_ERROR("%s: could not reserve space for batch with %" PRId64 " outputs\n", __func__, n_outputs_all);
        return -2;
    };

    // handle any pending defrags/shifts
    kv_self_update();

    int64_t n_outputs_prev = 0;

    while (sbatch.n_tokens > 0) {
        llama_ubatch ubatch = llama_ubatch();

        const auto & n_ubatch = cparams.n_ubatch;

        if (kv_self->recurrent) {
            if (embd_pooled) {
                // Pooled embeddings cannot be split across ubatches (yet)
                ubatch = sbatch.split_seq(cparams.n_ubatch);
            } else {
                // recurrent model architectures are easier to implement
                // with equal-length sequences
                ubatch = sbatch.split_equal(cparams.n_ubatch);
1241
1242
            }
        } else {
1243
1244
            ubatch = sbatch.split_simple(n_ubatch);
        }
1245

1246
1247
1248
        // count the outputs in this u_batch
        {
            int32_t n_outputs_new = 0;
1249

1250
1251
1252
1253
1254
1255
            if (n_outputs_all == n_tokens_all) {
                n_outputs_new = ubatch.n_tokens;
            } else {
                GGML_ASSERT(ubatch.output);
                for (uint32_t i = 0; i < ubatch.n_tokens; i++) {
                    n_outputs_new += (int32_t) (ubatch.output[i] != 0);
1256
                }
1257
            }
1258

1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
            // needs to happen before the graph is built
            n_outputs = n_outputs_new;
        }

        // find KV slot
        {
            if (!kv_self->find_slot(ubatch)) {
                kv_self->defrag();
                kv_self_update();
                if (!kv_self->find_slot(ubatch)) {
                    LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
                    return 1;
1271
1272
                }
            }
1273
1274
1275
1276
1277
1278
1279
1280

            if (!kv_self->recurrent) {
                // a heuristic, to avoid attending the full cache if it is not yet utilized
                // after enough generations, the benefit from this heuristic disappears
                // if we start defragmenting the cache, the benefit from this will be more important
                const uint32_t pad = kv_self->get_padding(cparams);
                kv_self->n = std::min(kv_self->size, std::max(pad, GGML_PAD(kv_self->cell_max(), pad)));
            }
1281
1282
        }

1283
        //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self->n, kv_self->used, kv_self->head);
1284

1285
1286
        ggml_backend_sched_reset(sched.get());
        ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
1287

1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
        auto * gf = graph_init();
        auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DECODER);

        // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);

        ggml_backend_sched_alloc_graph(sched.get(), gf);

        res->set_inputs(&ubatch);

        const auto compute_status = graph_compute(gf, ubatch.n_tokens > 1);
        if (compute_status != GGML_STATUS_SUCCESS) {
            switch (compute_status) {
                case GGML_STATUS_ABORTED:
                    return 2;
                case GGML_STATUS_ALLOC_FAILED:
                    return -2;
                case GGML_STATUS_FAILED:
                default:
                    return -3;
1307
1308
1309
            }
        }

1310
1311
1312
1313
        // plot the computation graph in dot format (for debugging purposes)
        //if (n_past%100 == 0) {
        //    ggml_graph_dump_dot(gf, NULL, "llama.dot");
        //}
1314

1315
1316
        auto * t_logits = cparams.causal_attn ? res->get_logits() : nullptr;
        auto * t_embd   = cparams.embeddings ? res->get_embd() : nullptr;
1317

1318
1319
1320
        if (t_embd && res->get_embd_pooled()) {
            t_embd = res->get_embd_pooled();
        }
1321

1322
1323
1324
1325
1326
        // extract logits
        if (t_logits && n_outputs > 0) {
            ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(sched.get(), t_logits);
            GGML_ASSERT(backend_res != nullptr);
            GGML_ASSERT(logits != nullptr);
1327

1328
            float * logits_out = logits + n_outputs_prev*n_vocab;
1329

1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
            if (n_outputs) {
                GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all);
                GGML_ASSERT((n_outputs_prev + n_outputs)*n_vocab <= (int64_t) logits_size);
                ggml_backend_tensor_get_async(backend_res, t_logits, logits_out, 0, n_outputs*n_vocab*sizeof(float));
            }
        }

        // extract embeddings
        if (t_embd && n_outputs > 0) {
            ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd);
            GGML_ASSERT(backend_embd != nullptr);

            switch (cparams.pooling_type) {
                case LLAMA_POOLING_TYPE_NONE:
                    {
                        // extract token embeddings
                        GGML_ASSERT(embd != nullptr);
                        float * embd_out = embd + n_outputs_prev*n_embd;

                        if (n_outputs) {
                            GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all);
                            GGML_ASSERT((n_outputs_prev + n_outputs)*n_embd <= (int64_t) embd_size);
                            ggml_backend_tensor_get_async(backend_embd, t_embd, embd_out, 0, n_outputs*n_embd*sizeof(float));
                        }
                    } break;
                case LLAMA_POOLING_TYPE_MEAN:
                case LLAMA_POOLING_TYPE_CLS:
                case LLAMA_POOLING_TYPE_LAST:
                    {
                        // extract sequence embeddings (cleared before processing each batch)
                        auto & embd_seq_out = embd_seq;

                        for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
                            const llama_seq_id seq_id = ubatch.seq_id[s][0];
                            if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
                                continue;
                            }
                            embd_seq_out[seq_id].resize(n_embd);
                            ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
                        }
                    } break;
                case LLAMA_POOLING_TYPE_RANK:
                    {
                        // extract the rerank score - a single float per sequence
                        auto & embd_seq_out = embd_seq;

                        for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
                            const llama_seq_id seq_id = ubatch.seq_id[s][0];
                            if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
                                continue;
                            }
                            embd_seq_out[seq_id].resize(1);
                            ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (seq_id)*sizeof(float), sizeof(float));
                        }
                    } break;
                case LLAMA_POOLING_TYPE_UNSPECIFIED:
                    {
                        GGML_ABORT("unknown pooling type");
                    }
            }
        }

        n_outputs_prev += n_outputs;
    }

    // finalize the batch processing
    kv_guard.commit();

    // set output mappings
    {
        bool sorted_output = true;

        GGML_ASSERT(sbatch.out_ids.size() == (size_t) n_outputs_all);

        for (int64_t i = 0; i < n_outputs_all; ++i) {
            int64_t out_id = sbatch.out_ids[i];
            output_ids[out_id] = i;
            if (out_id != i) {
                sorted_output = false;
            }
        }

        if (sorted_output) {
            sbatch.out_ids.clear();
        }
    }

    // set to total number of outputs in the batch, for use in llama_get_logits_ith
    n_outputs = n_outputs_all;

    // wait for the computation to finish (automatically done when obtaining the model output)
    //synchronize();

    // decide if we need to defrag the kv cache
    if (cparams.causal_attn && cparams.defrag_thold > 0.0f) {
        // - do not defrag small contexts (i.e. < 2048 tokens)
        // - count the padding towards the number of used tokens
        const float fragmentation = kv_self->n >= 2048 ? std::max(0.0f, 1.0f - float(kv_self->used + kv_self->get_padding(cparams))/float(kv_self->n)) : 0.0f;

        // queue defragmentation for next llama_kv_cache_update
        if (fragmentation > cparams.defrag_thold) {
            LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);

            kv_self->defrag();
        }
    }

    // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
    // overlap with device computation.
    ggml_backend_sched_reset(sched.get());

    return 0;
}

//
// output
//

int32_t llama_context::output_reserve(int32_t n_outputs) {
    const auto & hparams = model.hparams;

    const int64_t n_outputs_max = std::max<int64_t>(n_outputs, n_seq_max());

    const auto n_batch = cparams.n_batch;
    const auto n_vocab = hparams.n_vocab;
    const auto n_embd  = hparams.n_embd;

    // TODO: use a per-batch flag for logits presence instead
    bool has_logits =  cparams.causal_attn;
    bool has_embd   =  cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);

    // TODO: hacky enc-dec support
    if (model.arch == LLM_ARCH_T5) {
        has_logits = true;
        has_embd   = true;
    }

    logits_size = has_logits ? n_vocab*n_outputs_max : 0;
    embd_size   = has_embd   ?  n_embd*n_outputs_max : 0;

    if (output_ids.empty()) {
        // init, never resized afterwards
        output_ids.resize(n_batch);
    }

    const size_t prev_size = buf_output ? ggml_backend_buffer_get_size(buf_output.get()) : 0;
    const size_t new_size  = (logits_size + embd_size) * sizeof(float);

    // alloc only when more than the current capacity is required
    // TODO: also consider shrinking the buffer
    if (!buf_output || prev_size < new_size) {
        if (buf_output) {
#ifndef NDEBUG
            // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
            LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
            buf_output = nullptr;
            logits = nullptr;
            embd = nullptr;
        }

        auto * buft = ggml_backend_cpu_buffer_type();
        // try to use the host buffer of the device where the output tensor is allocated for faster transfer to system memory
        auto * output_dev = model.dev_output();
        auto * output_dev_host_buft = output_dev ? ggml_backend_dev_host_buffer_type(output_dev) : nullptr;
        if (output_dev_host_buft) {
            buft = output_dev_host_buft;
        }
        buf_output.reset(ggml_backend_buft_alloc_buffer(buft, new_size));
        if (buf_output == nullptr) {
            LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
            return 0;
        }
    }

    float * output_base = (float *) ggml_backend_buffer_get_base(buf_output.get());

    logits = has_logits ? output_base               : nullptr;
    embd   = has_embd   ? output_base + logits_size : nullptr;

    // set all ids as invalid (negative)
    std::fill(output_ids.begin(), output_ids.end(), -1);

    ggml_backend_buffer_clear(buf_output.get(), 0);

    this->n_outputs     = 0;
    this->n_outputs_max = n_outputs_max;

    return n_outputs_max;
}

void llama_context::output_reorder() {
    auto & out_ids = sbatch.out_ids;
    if (!out_ids.empty()) {
        const uint32_t n_vocab = model.hparams.n_vocab;
        const uint32_t n_embd  = model.hparams.n_embd;

        GGML_ASSERT((size_t) n_outputs == out_ids.size());

        // TODO: is there something more efficient which also minimizes swaps?
        // selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
        for (int32_t i = 0; i < n_outputs - 1; ++i) {
            int32_t j_min = i;
            for (int32_t j = i + 1; j < n_outputs; ++j) {
                if (out_ids[j] < out_ids[j_min]) {
                    j_min = j;
                }
            }
            if (j_min == i) { continue; }
            std::swap(out_ids[i], out_ids[j_min]);
            if (logits_size > 0) {
                for (uint32_t k = 0; k < n_vocab; k++) {
                    std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]);
                }
            }
            if (embd_size > 0) {
                for (uint32_t k = 0; k < n_embd; k++) {
                    std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]);
                }
            }
        }
        std::fill(output_ids.begin(), output_ids.end(), -1);
        for (int32_t i = 0; i < n_outputs; ++i) {
            output_ids[out_ids[i]] = i;
        }
        out_ids.clear();
    }
}

//
// graph
//

int32_t llama_context::graph_max_nodes() const {
    return std::max<int32_t>(65536, 5*model.n_tensors());
}

ggml_cgraph * llama_context::graph_init() {
    ggml_init_params params = {
        /*.mem_size   =*/ buf_compute_meta.size(),
        /*.mem_buffer =*/ buf_compute_meta.data(),
        /*.no_alloc   =*/ true,
    };

    ctx_compute.reset(ggml_init(params));

    return ggml_new_graph_custom(ctx_compute.get(), graph_max_nodes(), false);
}

llm_graph_result_ptr llama_context::graph_build(
            ggml_context * ctx,
             ggml_cgraph * gf,
      const llama_ubatch & ubatch,
            llm_graph_type gtype) {
    return model.build_graph(
            {
                /*.ctx         =*/ ctx,
                /*.arch        =*/ model.arch,
                /*.hparams     =*/ model.hparams,
                /*.cparams     =*/ cparams,
                /*.ubatch      =*/ ubatch,
                /*.sched       =*/ sched.get(),
                /*.backend_cpu =*/ backend_cpu,
                /*.cvec        =*/ &cvec,
                /*.loras       =*/ &loras,
                /*.memory      =*/ kv_self.get(),
                /*.cross       =*/ &cross,
                /*.n_outputs   =*/ n_outputs,
                /*.cb          =*/ graph_get_cb(),
            }, gf, gtype);
}

ggml_status llama_context::graph_compute(
            ggml_cgraph * gf,
                   bool   batched) {
    int n_threads        = batched ? cparams.n_threads_batch : cparams.n_threads;
    ggml_threadpool_t tp = batched ? threadpool_batch        : threadpool;

    if (backend_cpu != nullptr) {
        auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend_cpu));
        auto * set_threadpool_fn = (decltype(ggml_backend_cpu_set_threadpool) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_set_threadpool");
        set_threadpool_fn(backend_cpu, tp);
    }

    // set the number of threads for all the backends
    for (const auto & set_n_threads_fn : set_n_threads_fns) {
        set_n_threads_fn.second(set_n_threads_fn.first, n_threads);
    }

    auto status = ggml_backend_sched_graph_compute_async(sched.get(), gf);
    if (status != GGML_STATUS_SUCCESS) {
        LLAMA_LOG_ERROR("%s: ggml_backend_sched_graph_compute_async failed with error %d\n", __func__, status);
    }

    // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(sched));

    return status;
}

llm_graph_cb llama_context::graph_get_cb() const {
    return [&](const llama_ubatch & ubatch, ggml_tensor * cur, const char * name, int il) {
        if (il >= 0) {
            ggml_format_name(cur, "%s-%d", name, il);
        } else {
            ggml_set_name(cur, name);
        }

        if (!cparams.offload_kqv) {
            if (strcmp(name, "kqv_merged_cont") == 0) {
                // all nodes between the KV store and the attention output are run on the CPU
                ggml_backend_sched_set_tensor_backend(sched.get(), cur, backend_cpu);
            }
        }

        // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
        // FIXME: fix in ggml_backend_sched
        const bool full_offload = model.params.n_gpu_layers > (int) model.hparams.n_layer;
        if (ubatch.n_tokens < 32 || full_offload) {
            if (il != -1 && strcmp(name, "norm") == 0) {
                const auto & dev_layer = model.dev_layer(il);
                for (const auto & backend : backends) {
                    if (ggml_backend_get_device(backend.get()) == dev_layer) {
                        if (ggml_backend_supports_op(backend.get(), cur)) {
                            ggml_backend_sched_set_tensor_backend(sched.get(), cur, backend.get());
                        }
                    }
                }
            }
        }
    };
}

//
// state save/load
//

class llama_io_write_dummy : public llama_io_write_i {
public:
    llama_io_write_dummy() = default;

    void write(const void * /* src */, size_t size) override {
        size_written += size;
    }

    void write_tensor(const ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override {
        size_written += size;
    }

    size_t n_bytes() override {
        return size_written;
    }

private:
    size_t size_written = 0;
};

class llama_io_write_buffer : public llama_io_write_i {
public:
    llama_io_write_buffer(
            uint8_t * p, size_t len) : ptr(p), buf_size(len) {}
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700

    void write(const void * src, size_t size) override {
        if (size > buf_size) {
            throw std::runtime_error("unexpectedly reached end of buffer");
        }
        memcpy(ptr, src, size);
        ptr += size;
        size_written += size;
        buf_size -= size;
    }

1701
    void write_tensor(const ggml_tensor * tensor, size_t offset, size_t size) override {
1702
1703
1704
1705
1706
1707
1708
1709
1710
        if (size > buf_size) {
            throw std::runtime_error("unexpectedly reached end of buffer");
        }
        ggml_backend_tensor_get(tensor, ptr, offset, size);
        ptr += size;
        size_written += size;
        buf_size -= size;
    }

1711
    size_t n_bytes() override {
1712
1713
1714
        return size_written;
    }

1715
1716
private:
    uint8_t * ptr;
1717
    size_t buf_size = 0;
1718
1719
    size_t size_written = 0;
};
1720

1721
1722
1723
class llama_io_read_buffer : public llama_io_read_i {
public:
    llama_io_read_buffer(const uint8_t * p, size_t len) : ptr(p), buf_size(len) {}
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

    const uint8_t * read(size_t size) override {
        const uint8_t * base_ptr = ptr;
        if (size > buf_size) {
            throw std::runtime_error("unexpectedly reached end of buffer");
        }
        ptr += size;
        size_read += size;
        buf_size -= size;
        return base_ptr;
    }

    void read_to(void * dst, size_t size) override {
        memcpy(dst, read(size), size);
    }

1740
    size_t n_bytes() override {
1741
1742
1743
        return size_read;
    }

1744
1745
1746
1747
1748
private:
    const uint8_t * ptr;
    size_t buf_size = 0;
    size_t size_read = 0;
};
1749

1750
1751
1752
class llama_io_write_file : public llama_io_write_i {
public:
    llama_io_write_file(llama_file * f) : file(f) {}
1753
1754
1755
1756
1757
1758

    void write(const void * src, size_t size) override {
        file->write_raw(src, size);
        size_written += size;
    }

1759
    void write_tensor(const ggml_tensor * tensor, size_t offset, size_t size) override {
1760
1761
1762
1763
1764
        temp_buffer.resize(size);
        ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size);
        write(temp_buffer.data(), temp_buffer.size());
    }

1765
    size_t n_bytes() override {
1766
1767
1768
        return size_written;
    }

1769
private:
1770
    llama_file * file;
1771
    size_t size_written = 0;
1772
    std::vector<uint8_t> temp_buffer;
1773
};
1774

1775
1776
1777
class llama_io_read_file : public llama_io_read_i {
public:
    llama_io_read_file(llama_file * f) : file(f) {}
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789

    void read_to(void * dst, size_t size) override {
        file->read_raw(dst, size);
        size_read += size;
    }

    const uint8_t * read(size_t size) override {
        temp_buffer.resize(size);
        read_to(temp_buffer.data(), size);
        return temp_buffer.data();
    }

1790
    size_t n_bytes() override {
1791
1792
1793
        return size_read;
    }

1794
1795
1796
1797
1798
private:
    llama_file * file;
    size_t size_read = 0;
    std::vector<uint8_t> temp_buffer;
};
1799

1800
1801
1802
1803
1804
1805
1806
1807
size_t llama_context::state_get_size() {
    llama_io_write_dummy io;
    try {
        return state_write_data(io);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what());
        return 0;
    }
1808
1809
}

1810
1811
size_t llama_context::state_get_data(uint8_t * dst, size_t size) {
    llama_io_write_buffer io(dst, size);
1812
    try {
1813
        return state_write_data(io);
1814
1815
1816
1817
1818
1819
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what());
        return 0;
    }
}

1820
1821
size_t llama_context::state_set_data(const uint8_t * src, size_t size) {
    llama_io_read_buffer io(src, size);
1822
    try {
1823
        return state_read_data(io);
1824
    } catch (const std::exception & err) {
1825
        LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what());
1826
1827
1828
1829
        return 0;
    }
}

1830
1831
1832
1833
1834
1835
1836
1837
1838
size_t llama_context::state_seq_get_size(llama_seq_id seq_id) {
    llama_io_write_dummy io;
    try {
        return state_seq_write_data(io, seq_id);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what());
        return 0;
    }
}
1839

1840
1841
1842
1843
1844
1845
1846
1847
size_t llama_context::state_seq_get_data(llama_seq_id seq_id, uint8_t * dst, size_t size) {
    llama_io_write_buffer io(dst, size);
    try {
        return state_seq_write_data(io, seq_id);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what());
        return 0;
    }
1848
1849
}

1850
1851
size_t llama_context::state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size) {
    llama_io_read_buffer io(src, size);
1852
    try {
1853
        return state_seq_read_data(io, seq_id);
1854
1855
1856
1857
1858
1859
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what());
        return 0;
    }
}

1860
1861
bool llama_context::state_load_file(const char * filepath, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    llama_file file(filepath, "rb");
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890

    // sanity checks
    {
        const uint32_t magic   = file.read_u32();
        const uint32_t version = file.read_u32();

        if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
            LLAMA_LOG_ERROR("%s: unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
            return false;
        }
    }

    // load the prompt
    {
        const uint32_t n_token_count = file.read_u32();

        if (n_token_count > n_token_capacity) {
            LLAMA_LOG_ERROR("%s: token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
            return false;
        }

        file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
        *n_token_count_out = n_token_count;
    }

    // restore the context state
    {
        const size_t n_state_size_cur = file.size() - file.tell();

1891
1892
        llama_io_read_file io( &file);
        const size_t n_read = state_read_data(io);
1893
1894
1895
1896
1897
1898
1899

        if (n_read != n_state_size_cur) {
            LLAMA_LOG_ERROR("%s: did not read all of the session file data! size %zu, got %zu\n", __func__, n_state_size_cur, n_read);
            return false;
        }
    }

1900
    return true;
1901
1902
}

1903
1904
bool llama_context::state_save_file(const char * filepath, const llama_token * tokens, size_t n_token_count) {
    llama_file file(filepath, "wb");
1905
1906
1907
1908
1909
1910
1911
1912
1913

    file.write_u32(LLAMA_SESSION_MAGIC);
    file.write_u32(LLAMA_SESSION_VERSION);

    // save the prompt
    file.write_u32((uint32_t) n_token_count);
    file.write_raw(tokens, sizeof(llama_token) * n_token_count);

    // save the context state using stream saving
1914
1915
    llama_io_write_file io(&file);
    state_write_data(io);
1916
1917
1918
1919

    return true;
}

1920
1921
size_t llama_context::state_seq_load_file(llama_seq_id seq_id, const char * filepath, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    llama_file file(filepath, "rb");
1922

1923
1924
1925
1926
    // version checks
    {
        const uint32_t magic   = file.read_u32();
        const uint32_t version = file.read_u32();
1927

1928
1929
1930
1931
        if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
            LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
            return 0;
        }
1932
1933
    }

1934
1935
1936
    // load the prompt
    {
        const uint32_t n_token_count = file.read_u32();
1937

1938
1939
1940
1941
        if (n_token_count > n_token_capacity) {
            LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
            return 0;
        }
1942

1943
1944
        file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
        *n_token_count_out = n_token_count;
1945
    }
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

    // restore the context state
    {
        const size_t state_size = file.size() - file.tell();
        llama_io_read_file io(&file);
        const size_t nread = state_seq_read_data(io, seq_id);
        if (!nread) {
            LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
            return 0;
        }
        GGML_ASSERT(nread <= state_size);
        GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
    }

    return file.tell();
1961
1962
}

1963
size_t llama_context::state_seq_save_file(llama_seq_id seq_id, const char * filepath, const llama_token * tokens, size_t n_token_count) {
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
    llama_file file(filepath, "wb");

    file.write_u32(LLAMA_STATE_SEQ_MAGIC);
    file.write_u32(LLAMA_STATE_SEQ_VERSION);

    // save the prompt
    file.write_u32((uint32_t) n_token_count);
    file.write_raw(tokens, sizeof(llama_token) * n_token_count);

    // save the context state using stream saving
1974
1975
    llama_io_write_file io(&file);
    state_seq_write_data(io, seq_id);
1976
1977

    const size_t res = file.tell();
1978
1979
    GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + io.n_bytes());

1980
1981
1982
    return res;
}

1983
1984
size_t llama_context::state_write_data(llama_io_write_i & io) {
    LLAMA_LOG_DEBUG("%s: writing state\n", __func__);
1985

1986
    // write model info
1987
    {
1988
        LLAMA_LOG_DEBUG("%s: - writing model info\n", __func__);
1989

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
        const std::string arch_str = llm_arch_name(model.arch);
        io.write_string(arch_str);
        // TODO: add more model-specific info which should prevent loading the session file if not identical
    }

    // write output ids
    {
        LLAMA_LOG_DEBUG("%s: - writing output ids\n", __func__);

        output_reorder();

        const auto n_outputs    = this->n_outputs;
        const auto & output_ids = this->output_ids;

        std::vector<int32_t> w_output_pos;

        GGML_ASSERT(n_outputs <= n_outputs_max);

        w_output_pos.resize(n_outputs);

        // build a more compact representation of the output ids
        for (size_t i = 0; i < n_batch(); ++i) {
            // map an output id to a position in the batch
            int32_t pos = output_ids[i];
            if (pos >= 0) {
                GGML_ASSERT(pos < n_outputs);
                w_output_pos[pos] = i;
            }
        }

        io.write(&n_outputs, sizeof(n_outputs));

        if (n_outputs) {
            io.write(w_output_pos.data(), n_outputs * sizeof(int32_t));
2024
2025
2026
        }
    }

2027
    // write logits
2028
    {
2029
        LLAMA_LOG_DEBUG("%s: - writing logits\n", __func__);
2030

2031
2032
2033
2034
2035
2036
        const uint64_t logits_size = std::min((uint64_t) this->logits_size, (uint64_t) n_outputs * model.hparams.n_vocab);

        io.write(&logits_size, sizeof(logits_size));

        if (logits_size) {
            io.write(logits, logits_size * sizeof(float));
2037
        }
2038
    }
2039

2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
    // write embeddings
    {
        LLAMA_LOG_DEBUG("%s: - writing embeddings\n", __func__);

        const uint64_t embd_size = std::min((uint64_t) this->embd_size, (uint64_t) n_outputs * model.hparams.n_embd);

        io.write(&embd_size, sizeof(embd_size));

        if (embd_size) {
            io.write(embd, embd_size * sizeof(float));
        }
2051
2052
    }

2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
    LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__);
    kv_self->state_write(io);

    return io.n_bytes();
}

size_t llama_context::state_read_data(llama_io_read_i & io) {
    LLAMA_LOG_DEBUG("%s: reading state\n", __func__);

    // read model info
2063
    {
2064
2065
2066
2067
2068
2069
2070
2071
        LLAMA_LOG_DEBUG("%s: - reading model info\n", __func__);

        const std::string cur_arch_str = llm_arch_name(model.arch);

        std::string arch_str;
        io.read_string(arch_str);
        if (cur_arch_str != arch_str) {
            throw std::runtime_error(format("wrong model arch: '%s' instead of '%s'", arch_str.c_str(), cur_arch_str.c_str()));
2072
        }
2073
        // TODO: add more info which needs to be identical but which is not verified otherwise
2074
2075
    }

2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
    // read output ids
    {
        LLAMA_LOG_DEBUG("%s: - reading output ids\n", __func__);

        auto n_outputs = this->n_outputs;
        io.read_to(&n_outputs, sizeof(n_outputs));

        if (n_outputs > output_reserve(n_outputs)) {
            throw std::runtime_error("could not reserve outputs");
        }

        std::vector<int32_t> output_pos;

        if (n_outputs) {
            output_pos.resize(n_outputs);
            io.read_to(output_pos.data(), n_outputs * sizeof(int32_t));

            for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
                int32_t id = output_pos[i];
                if ((uint32_t) id >= n_batch()) {
                    throw std::runtime_error(format("invalid output id, %d does not fit in batch size of %u", id, n_batch()));
                }
                this->output_ids[id] = i;
            }

            this->n_outputs = n_outputs;
        }
    }

    // read logits
    {
        LLAMA_LOG_DEBUG("%s: - reading logits\n", __func__);

        uint64_t logits_size;
        io.read_to(&logits_size, sizeof(logits_size));

        if (this->logits_size < logits_size) {
            throw std::runtime_error("logits buffer too small");
        }

        if (logits_size) {
            io.read_to(this->logits, logits_size * sizeof(float));
        }
    }

    // read embeddings
    {
        LLAMA_LOG_DEBUG("%s: - reading embeddings\n", __func__);

        uint64_t embd_size;
        io.read_to(&embd_size, sizeof(embd_size));

        if (this->embd_size < embd_size) {
            throw std::runtime_error("embeddings buffer too small");
        }

        if (embd_size) {
            io.read_to(this->embd, embd_size * sizeof(float));
        }
    }

    LLAMA_LOG_DEBUG("%s: - reading KV self\n", __func__);
    kv_self->state_read(io);

    return io.n_bytes();
}

size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id) {
    GGML_UNUSED(seq_id);

    kv_self->state_write(io, seq_id);

    return io.n_bytes();
}

size_t llama_context::state_seq_read_data(llama_io_read_i & io, llama_seq_id seq_id) {
    GGML_UNUSED(seq_id);

    kv_self->state_read(io, seq_id);

    return io.n_bytes();
}

//
// perf
//

llama_perf_context_data llama_context::perf_get_data() const {
    llama_perf_context_data data = {};

    data.t_start_ms  = 1e-3 * t_start_us;
    data.t_load_ms   = 1e-3 * t_load_us;
    data.t_p_eval_ms = 1e-3 * t_p_eval_us;
    data.t_eval_ms   = 1e-3 * t_eval_us;
    data.n_p_eval    = std::max(1, n_p_eval);
    data.n_eval      = std::max(1, n_eval);

    return data;
}

void llama_context::perf_reset() {
    t_start_us  = ggml_time_us();
    t_eval_us   = n_eval = 0;
    t_p_eval_us = n_p_eval = 0;
}

//
// interface implementation
//

llama_context_params llama_context_default_params() {
    llama_context_params result = {
        /*.n_ctx                       =*/ 512,
        /*.n_batch                     =*/ 2048,
        /*.n_ubatch                    =*/ 512,
        /*.n_seq_max                   =*/ 1,
        /*.n_threads                   =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
        /*.n_threads_batch             =*/ GGML_DEFAULT_N_THREADS,
        /*.rope_scaling_type           =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
        /*.pooling_type                =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
        /*.attention_type              =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED,
        /*.rope_freq_base              =*/ 0.0f,
        /*.rope_freq_scale             =*/ 0.0f,
        /*.yarn_ext_factor             =*/ -1.0f,
        /*.yarn_attn_factor            =*/ 1.0f,
        /*.yarn_beta_fast              =*/ 32.0f,
        /*.yarn_beta_slow              =*/ 1.0f,
        /*.yarn_orig_ctx               =*/ 0,
        /*.defrag_thold                =*/ -1.0f,
        /*.cb_eval                     =*/ nullptr,
        /*.cb_eval_user_data           =*/ nullptr,
        /*.type_k                      =*/ GGML_TYPE_F16,
        /*.type_v                      =*/ GGML_TYPE_F16,
        /*.logits_all                  =*/ false,
        /*.embeddings                  =*/ false,
        /*.offload_kqv                 =*/ true,
        /*.flash_attn                  =*/ false,
        /*.no_perf                     =*/ true,
        /*.cross_attn                  =*/ false,
        /*.abort_callback              =*/ nullptr,
        /*.abort_callback_data         =*/ nullptr,
    };

    return result;
}

llama_context * llama_init_from_model(
                 llama_model * model,
        llama_context_params   params) {
    if (!model) {
        LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
        return nullptr;
    }

    if (params.n_batch == 0 && params.n_ubatch == 0) {
        LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
        return nullptr;
    }

    if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
        LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
        return nullptr;
    }

    if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
        LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
        params.flash_attn = false;
    }

    if (ggml_is_quantized(params.type_v) && !params.flash_attn) {
        LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
        return nullptr;
    }

    try {
        auto * ctx = new llama_context(*model, params);
        return ctx;
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: failed to initialize the context: %s\n", __func__, err.what());
    }

    return nullptr;
}

// deprecated
llama_context * llama_new_context_with_model(
                 llama_model * model,
        llama_context_params   params) {
    return llama_init_from_model(model, params);
}

void llama_free(llama_context * ctx) {
    delete ctx;
}

uint32_t llama_n_ctx(const llama_context * ctx) {
    return ctx->n_ctx();
}

uint32_t llama_n_batch(const llama_context * ctx) {
    return ctx->n_batch();
}

uint32_t llama_n_ubatch(const llama_context * ctx) {
    return ctx->n_ubatch();
}

uint32_t llama_n_seq_max(const llama_context * ctx) {
    return ctx->n_seq_max();
}

const llama_model * llama_get_model(const llama_context * ctx) {
    return &ctx->get_model();
}

llama_kv_cache * llama_get_kv_self(llama_context * ctx) {
    return ctx->get_kv_self();
}

void llama_kv_self_update(llama_context * ctx) {
    ctx->kv_self_update();
}

enum llama_pooling_type llama_pooling_type(const llama_context * ctx) {
    return ctx->pooling_type();
}

void llama_attach_threadpool(
            llama_context * ctx,
        ggml_threadpool_t   threadpool,
        ggml_threadpool_t   threadpool_batch) {
    ctx->attach_threadpool(threadpool, threadpool_batch);
}

void llama_detach_threadpool(llama_context * ctx) {
    ctx->detach_threadpool();
}

void llama_set_n_threads(llama_context * ctx, int32_t n_threads, int32_t n_threads_batch) {
    ctx->set_n_threads(n_threads, n_threads_batch);
}

int32_t llama_n_threads(llama_context * ctx) {
    return ctx->n_threads();
}

int32_t llama_n_threads_batch(llama_context * ctx) {
    return ctx->n_threads_batch();
}

void llama_set_abort_callback(llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
    ctx->set_abort_callback(abort_callback, abort_callback_data);
}

void llama_set_embeddings(llama_context * ctx, bool embeddings) {
    ctx->set_embeddings(embeddings);
}

void llama_set_causal_attn(llama_context * ctx, bool causal_attn) {
    ctx->set_causal_attn(causal_attn);
}

void llama_set_warmup(llama_context * ctx, bool warmup) {
    ctx->set_warmup(warmup);
}

void llama_set_cross_attention(struct llama_context * ctx, bool cross_attention) {
    ctx->set_cross_attn(cross_attention);
}

void llama_synchronize(llama_context * ctx) {
    ctx->synchronize();
}

float * llama_get_logits(llama_context * ctx) {
    ctx->synchronize();

    return ctx->get_logits();
}

float * llama_get_logits_ith(llama_context * ctx, int32_t i) {
    ctx->synchronize();

    return ctx->get_logits_ith(i);
}

float * llama_get_embeddings(llama_context * ctx) {
    ctx->synchronize();

    return ctx->get_embeddings();
}

float * llama_get_embeddings_ith(llama_context * ctx, int32_t i) {
    ctx->synchronize();

    return ctx->get_embeddings_ith(i);
}

float * llama_get_embeddings_seq(llama_context * ctx, llama_seq_id seq_id) {
    ctx->synchronize();

    return ctx->get_embeddings_seq(seq_id);
}

// llama adapter API

int32_t llama_set_adapter_lora(
            llama_context * ctx,
            llama_adapter_lora * adapter,
            float scale) {
    ctx->set_adapter_lora(adapter, scale);

    return 0;
}

int32_t llama_rm_adapter_lora(
            llama_context * ctx,
            llama_adapter_lora * adapter) {
    bool res = ctx->rm_adapter_lora(adapter);

    return res ? 0 : -1;
}

void llama_clear_adapter_lora(llama_context * ctx) {
    ctx->clear_adapter_lora();
}

int32_t llama_apply_adapter_cvec(
        llama_context * ctx,
                 const float * data,
                      size_t   len,
                     int32_t   n_embd,
                     int32_t   il_start,
                     int32_t   il_end) {
    bool res = ctx->apply_adapter_cvec(data, len, n_embd, il_start, il_end);

    return res ? 0 : -1;
}

//
// kv cache view
//

llama_kv_cache_view llama_kv_cache_view_init(const llama_context * ctx, int32_t n_seq_max) {
    const auto * kv = ctx->get_kv_self();
    if (kv == nullptr) {
        LLAMA_LOG_WARN("%s: the context does not have a KV cache\n", __func__);
        return {};
    }

    return llama_kv_cache_view_init(*kv, n_seq_max);
}

void llama_kv_cache_view_update(const llama_context * ctx, llama_kv_cache_view * view) {
    const auto * kv = ctx->get_kv_self();
    if (kv == nullptr) {
        LLAMA_LOG_WARN("%s: the context does not have a KV cache\n", __func__);
        return;
    }

    llama_kv_cache_view_update(view, kv);
}

//
// kv cache
//

// deprecated
int32_t llama_get_kv_cache_token_count(const llama_context * ctx) {
    return llama_kv_self_n_tokens(ctx);
}

int32_t llama_kv_self_n_tokens(const llama_context * ctx) {
    const auto * kv = ctx->get_kv_self();
    if (!kv) {
        return 0;
    }

    return kv->get_n_tokens();
}

// deprecated
int32_t llama_get_kv_cache_used_cells(const llama_context * ctx) {
    return llama_kv_self_used_cells(ctx);
}

int32_t llama_kv_self_used_cells(const llama_context * ctx) {
    const auto * kv = ctx->get_kv_self();
    if (!kv) {
        return 0;
    }

    return kv->get_used_cells();
}

// deprecated
void llama_kv_cache_clear(llama_context * ctx) {
    llama_kv_self_clear(ctx);
}

void llama_kv_self_clear(llama_context * ctx) {
    auto * kv = ctx->get_kv_self();
    if (!kv) {
        return;
    }

    kv->clear();
}

// deprecated
bool llama_kv_cache_seq_rm(
        llama_context * ctx,
         llama_seq_id   seq_id,
            llama_pos   p0,
            llama_pos   p1) {
    return llama_kv_self_seq_rm(ctx, seq_id, p0, p1);
}

bool llama_kv_self_seq_rm(
        llama_context * ctx,
         llama_seq_id   seq_id,
            llama_pos   p0,
            llama_pos   p1) {
    auto * kv = ctx->get_kv_self();
    if (!kv) {
        return true;
    }

    return kv->seq_rm(seq_id, p0, p1);
}

// deprecated
void llama_kv_cache_seq_cp(
        llama_context * ctx,
         llama_seq_id   seq_id_src,
         llama_seq_id   seq_id_dst,
            llama_pos   p0,
            llama_pos   p1) {
    return llama_kv_self_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1);
}

void llama_kv_self_seq_cp(
        llama_context * ctx,
         llama_seq_id   seq_id_src,
         llama_seq_id   seq_id_dst,
            llama_pos   p0,
            llama_pos   p1) {
    auto * kv = ctx->get_kv_self();
    if (!kv) {
        return;
    }

    return kv->seq_cp(seq_id_src, seq_id_dst, p0, p1);
}

// deprecated
void llama_kv_cache_seq_keep(
        llama_context * ctx,
         llama_seq_id   seq_id) {
    return llama_kv_self_seq_keep(ctx, seq_id);
}

void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
    auto * kv = ctx->get_kv_self();
    if (!kv) {
        return;
    }

    return kv->seq_keep(seq_id);
}

// deprecated
void llama_kv_cache_seq_add(
        llama_context * ctx,
         llama_seq_id   seq_id,
            llama_pos   p0,
            llama_pos   p1,
            llama_pos   delta) {
    return llama_kv_self_seq_add(ctx, seq_id, p0, p1, delta);
}

void llama_kv_self_seq_add(
        llama_context * ctx,
         llama_seq_id   seq_id,
            llama_pos   p0,
            llama_pos   p1,
            llama_pos   delta) {
    auto * kv = ctx->get_kv_self();
    if (!kv) {
        return;
    }

    return kv->seq_add(seq_id, p0, p1, delta);
}

// deprecated
void llama_kv_cache_seq_div(
        llama_context * ctx,
         llama_seq_id   seq_id,
            llama_pos   p0,
            llama_pos   p1,
                  int   d) {
    return llama_kv_self_seq_div(ctx, seq_id, p0, p1, d);
}

void llama_kv_self_seq_div(
        llama_context * ctx,
         llama_seq_id   seq_id,
            llama_pos   p0,
            llama_pos   p1,
                  int   d) {
    auto * kv = ctx->get_kv_self();
    if (!kv) {
        return;
    }

    return kv->seq_div(seq_id, p0, p1, d);
}

// deprecated
llama_pos llama_kv_cache_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) {
    return llama_kv_self_seq_pos_max(ctx, seq_id);
}

llama_pos llama_kv_self_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) {
    const auto * kv = ctx->get_kv_self();
    if (!kv) {
        return 0;
    }

    return kv->seq_pos_max(seq_id);
}

// deprecated
void llama_kv_cache_defrag(llama_context * ctx) {
    return llama_kv_self_defrag(ctx);
}

void llama_kv_self_defrag(llama_context * ctx) {
    auto * kv = ctx->get_kv_self();
    if (!kv) {
        return;
    }

    return kv->defrag();
}

// deprecated
bool llama_kv_cache_can_shift(const llama_context * ctx) {
    return llama_kv_self_can_shift(ctx);
}

bool llama_kv_self_can_shift(const llama_context * ctx) {
    const auto * kv = ctx->get_kv_self();
    if (!kv) {
        return false;
    }

    return kv->get_can_shift();
}

// deprecated
void llama_kv_cache_update(llama_context * ctx) {
    llama_kv_self_update(ctx);
}

// llama state API

// deprecated
size_t llama_get_state_size(llama_context * ctx) {
    return llama_state_get_size(ctx);
}

// deprecated
size_t llama_copy_state_data(llama_context * ctx, uint8_t * dst) {
    return llama_state_get_data(ctx, dst, -1);
}

// deprecated
size_t llama_set_state_data(llama_context * ctx, const uint8_t * src) {
    return llama_state_set_data(ctx, src, -1);
}

// deprecated
bool llama_load_session_file(llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
2662
2663
}

2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
// deprecated
bool llama_save_session_file(llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
    return llama_state_save_file(ctx, path_session, tokens, n_token_count);
}

// Returns the *actual* size of the state.
// Intended to be used when saving to state to a buffer.
size_t llama_state_get_size(llama_context * ctx) {
    return ctx->state_get_size();
}

size_t llama_state_get_data(llama_context * ctx, uint8_t * dst, size_t size) {
    ctx->synchronize();

    return ctx->state_get_data(dst, size);
}

// Sets the state reading from the specified source address
size_t llama_state_set_data(llama_context * ctx, const uint8_t * src, size_t size) {
    ctx->synchronize();

    return ctx->state_set_data(src, size);
}

bool llama_state_load_file(llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    ctx->synchronize();

2691
    try {
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
        return ctx->state_load_file(path_session, tokens_out, n_token_capacity, n_token_count_out);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error loading session file: %s\n", __func__, err.what());
        return false;
    }
}

bool llama_state_save_file(llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
    ctx->synchronize();

    try {
        return ctx->state_save_file(path_session, tokens, n_token_count);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error saving session file: %s\n", __func__, err.what());
        return false;
    }
}

size_t llama_state_seq_get_size(llama_context * ctx, llama_seq_id seq_id) {
    return ctx->state_seq_get_size(seq_id);
}

size_t llama_state_seq_get_data(llama_context * ctx, uint8_t * dst, size_t size, llama_seq_id seq_id) {
    ctx->synchronize();

    return ctx->state_seq_get_data(seq_id, dst, size);
}

size_t llama_state_seq_set_data(llama_context * ctx, const uint8_t * src, size_t size, llama_seq_id seq_id) {
    ctx->synchronize();

    return ctx->state_seq_set_data(seq_id, src, size);
}

size_t llama_state_seq_save_file(llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
    ctx->synchronize();

    try {
        return ctx->state_seq_save_file(seq_id, filepath, tokens, n_token_count);
2731
2732
2733
2734
2735
2736
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error saving sequence state file: %s\n", __func__, err.what());
        return 0;
    }
}

2737
2738
2739
size_t llama_state_seq_load_file(llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    ctx->synchronize();

2740
    try {
2741
        return ctx->state_seq_load_file(dest_seq_id, filepath, tokens_out, n_token_capacity, n_token_count_out);
2742
2743
2744
2745
2746
2747
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error loading sequence state file: %s\n", __func__, err.what());
        return 0;
    }
}

2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
///

int32_t llama_encode(
        llama_context * ctx,
          llama_batch   batch) {
    const int ret = ctx->encode(batch);
    if (ret != 0) {
        LLAMA_LOG_ERROR("%s: failed to encode, ret = %d\n", __func__, ret);
    }

    return ret;
}

int32_t llama_decode(
        llama_context * ctx,
          llama_batch   batch) {
    const int ret = ctx->decode(batch);
    if (ret != 0) {
        LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
    }

    return ret;
}

//
// perf
//

llama_perf_context_data llama_perf_context(const llama_context * ctx) {
    llama_perf_context_data data = {};

    if (ctx == nullptr) {
        return data;
    }

    data = ctx->perf_get_data();

    return data;
}

void llama_perf_context_print(const llama_context * ctx) {
    const auto data = llama_perf_context(ctx);

    const double t_end_ms = 1e-3 * ggml_time_us();

    LLAMA_LOG_INFO("%s:        load time = %10.2f ms\n", __func__, data.t_load_ms);
    LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
            __func__, data.t_p_eval_ms, data.n_p_eval, data.t_p_eval_ms / data.n_p_eval, 1e3 / data.t_p_eval_ms * data.n_p_eval);
    LLAMA_LOG_INFO("%s:        eval time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
            __func__, data.t_eval_ms, data.n_eval, data.t_eval_ms / data.n_eval, 1e3 / data.t_eval_ms * data.n_eval);
    LLAMA_LOG_INFO("%s:       total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - data.t_start_ms), (data.n_p_eval + data.n_eval));
}

void llama_perf_context_reset(llama_context * ctx) {
    ctx->perf_reset();
2803
}