runner.go 25.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
package main

import (
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
	"path/filepath"
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
21
	"unicode/utf8"
22

23
24
	"golang.org/x/sync/semaphore"

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
	"github.com/ollama/ollama/api"
	"github.com/ollama/ollama/llama"
)

// input is an element of the prompt to process, either
// a token or an image embedding (generated from a vision projector)
type input struct {
	token int

	// embed is an image embedding
	embed []float32
}

type Sequence struct {
	// batch index
	iBatch int

	// number of tokens predicted so far
	numPredicted int

	// prompt inputs left to evaluate
	inputs []input

48
49
50
	// inputs that have been added to a batch but not yet submitted to Decode
	pendingInputs []input

51
52
53
54
55
56
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

57
58
59
60
	// does this sequence require cross-attention layers to be processed? - if we have seen
	// an image for certain multi-modal models
	crossAttention bool

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

	samplingCtx *llama.SamplingContext

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
	numKeep int

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

	doneReason string

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
	numDecoded          int
	numPromptInputs     int
}

type NewSequenceParams struct {
	numPredict     int
	stop           []string
	numKeep        int
	samplingParams *llama.SamplingParams
	embedding      bool
}

func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequenceParams) (*Sequence, error) {
	s.ready.Wait()

	startTime := time.Now()

	inputs, err := s.inputs(prompt, images)
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
		params.numKeep = len(inputs)
	}

117
118
	if s.model.AddBOSToken() {
		params.numKeep += 1
119
120
	}

121
122
123
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

124
	if len(inputs) > s.cache.numCtx {
125
		discard := len(inputs) - s.cache.numCtx
126
		newInputs := inputs[:params.numKeep]
127
128
129
		newInputs = append(newInputs, inputs[params.numKeep+discard:]...)

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
130
		inputs = newInputs
131
132
133
134
	}

	var sc *llama.SamplingContext
	if params.samplingParams != nil {
Jesse Gross's avatar
Jesse Gross committed
135
136
137
138
		sc, err = llama.NewSamplingContext(s.model, *params.samplingParams)
		if err != nil {
			return nil, err
		}
139
140
		for _, input := range inputs {
			if input.embed == nil {
141
				sc.Accept(input.token, false)
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
			}
		}
	}

	return &Sequence{
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
		samplingCtx:         sc,
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// generating image embeddings for each image
func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
	var inputs []input
167
168
169
170
171
172
173
174
175
176
	var parts []string
	var matches [][]string

	if s.image != nil {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
	} else {
		parts = []string{prompt}
	}
177
178
179

	for i, part := range parts {
		// text - tokenize
180
181
182
183
		tokens, err := s.lc.Model().Tokenize(part, i == 0, true)
		if err != nil {
			return nil, err
		}
184

185
186
		for _, t := range tokens {
			inputs = append(inputs, input{token: t})
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
		}

		// image - generate image embedding
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
				return nil, fmt.Errorf("invalid image index: %d", n)
			}

Jesse Gross's avatar
Jesse Gross committed
205
206
207
208
209
			embed, err := s.image.NewEmbed(s.lc, images[imageIndex].Data, images[imageIndex].AspectRatioID)
			if err != nil {
				return nil, err
			}

210
211
212
213
214
215
216
217
218
219
			for _, e := range embed {
				inputs = append(inputs, input{embed: e})
			}
		}
	}

	return inputs, nil
}

type Server struct {
220
221
222
223
224
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
225
226
	model *llama.Model

227
	// image model context for multi-modal models
228
	image *ImageContext
229

230
231
232
233
234
235
236
237
238
239
	// status for external health reporting - loading, ready to serve, etc.
	status ServerStatus

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
240
	// TODO (jmorganca): make this n_batch
241
242
	batchSize int

243
244
245
246
247
248
249
250
251
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// decoding state
	lc *llama.Context
252

253
	// the list of simultaneous sequences being evaluated
254
255
	seqs []*Sequence

256
257
258
259
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
	// KV cache
	cache *InputCache

	// next sequence for prompt processing to avoid starvation
	nextSeq int
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
277
278
279
280
281
282
283
284
285
286
287
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
288
289
	}

290
291
292
293
294
295
296
297
298
299
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
300
301
302
303
304
305
306
307
308
309
310
}

func (s *Server) removeSequence(seqIndex int, reason string) {
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
311
	s.seqsSem.Release(1)
312
313
314
315
316
}

func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

317
	// Logically these batches are used only within the context of processBatch
318
	// but it is better for performance to allocate them once here
Jesse Gross's avatar
Jesse Gross committed
319
320
321
322
	tokenBatch, err := llama.NewBatch(s.batchSize, len(s.seqs), 0)
	if err != nil {
		panic(err)
	}
323
324
	defer tokenBatch.Free()

325
326
327
	var embedBatch *llama.Batch
	embedBatchSize := s.image.BatchSize(s.batchSize)
	if embedBatchSize != 0 {
Jesse Gross's avatar
Jesse Gross committed
328
329
330
331
		embedBatch, err = llama.NewBatch(embedBatchSize, len(s.seqs), s.image.EmbedSize(s.lc))
		if err != nil {
			panic(err)
		}
332
333
334
335
		defer embedBatch.Free()
	} else {
		embedBatch = &llama.Batch{}
	}
336
337
338
339
340
341

	for {
		select {
		case <-ctx.Done():
			return
		default:
342
343
344
345
346
			err := s.processBatch(tokenBatch, embedBatch)
			if err != nil {
				panic(err)
			}

347
348
349
350
351
352
353
354
355
356
357
358
359
			tokenBatch.Clear()
			embedBatch.Clear()
		}
	}
}

// TODO (jmorganca): processBatch should be simplified, removing:
// * sampling
// * stop token checking
// * metrics
// these should instead be handled by the handlers
// it should only be responsible for accepting tokens or embeddings and
// processing batches as fast as possible
360
func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch) error {
361
362
363
364
365
366
367
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

	var batch *llama.Batch
368
	crossAttention := false
369
370
371
372
373
374
375
376
377
378
379

	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]

		if seq == nil {
			continue
		}

		// if past the num predict limit
380
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
381
382
383
384
385
			s.removeSequence(seqIdx, "limit")
			continue
		}

		for i, input := range seq.inputs {
386
387
388
389
390
391
			if len(seq.cache.Inputs)+len(seq.pendingInputs)+1 > s.cache.numCtx {
				if len(seq.pendingInputs) == 0 {
					err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
					if err != nil {
						return err
					}
392
393
394
395
396
				} else {
					break
				}
			}

397
398
399
400
401
402
403
404
405
406
407
			embedding := input.embed != nil

			// If we don't currently have a batch, use one of the correct type and
			// fill it up as much as possible across all sequences. If we encounter an
			// input of the opppsite type, stop for that sequence but then pick up from
			// there for the next batch, ensuring that we alternate types
			if batch == nil {
				if !embedding {
					batch = tokenBatch
				} else {
					batch = embedBatch
408
					seq.crossAttention = s.image.NeedCrossAttention(input)
409
				}
410
			} else if embedding != batch.IsEmbedding() || crossAttention != seq.crossAttention {
411
412
413
414
				s.nextSeq = seqIdx
				break
			}

415
			if i >= batch.Size() {
416
417
418
				break
			}

419
			crossAttention = seq.crossAttention
420
421
			batch.Add(input.token, input.embed, len(seq.cache.Inputs)+len(seq.pendingInputs), i+1 == len(seq.inputs), seq.cache.Id)
			seq.pendingInputs = append(seq.pendingInputs, input)
422
423
			seq.iBatch = batch.NumTokens() - 1
		}
424
425

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
426
427
428
	}

	if batch == nil || batch.NumTokens() == 0 {
429
		return nil
430
431
	}

432
433
	s.lc.SetCrossAttention(crossAttention)

434
435
	err := s.lc.Decode(batch)
	if err != nil {
436
437
438
439
440
441
		if errors.Is(err, llama.ErrKvCacheFull) {
			slog.Debug("defragmenting kv cache")
			s.cache.lc.KvCacheDefrag()
			err = s.lc.Decode(batch)
		}
		if err != nil {
442
			return fmt.Errorf("failed to decode batch: %w", err)
443
		}
444
445
	}

446
447
448
449
450
451
452
	if crossAttention {
		// synchronize state to ensure the cross attention batch is complete.
		// needed specifically for multi-GPU systems otherwise an inflight
		// task may be incorrectly invalidated causing a crash
		s.lc.Synchronize()
	}

453
454
455
456
457
	for i, seq := range s.seqs {
		if seq == nil {
			continue
		}

458
459
460
461
462
463
		// After calling Decode, pending inputs are now in the cache
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
			seq.pendingInputs = []input{}
		}

464
465
466
467
468
469
470
471
472
473
474
475
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
			continue
		}

		seq.numDecoded += 1
		if seq.numDecoded == 1 {
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
476
			embed := s.lc.GetEmbeddingsSeq(seq.cache.Id)
477
478
479
480
481
482
483
484
485
486
			if embed == nil {
				embed = s.lc.GetEmbeddingsIth(seq.iBatch)
			}

			seq.embedding <- embed
			s.removeSequence(i, "")
			continue
		}

		// sample a token
487
488
		token := seq.samplingCtx.Sample(s.lc, seq.iBatch)
		seq.samplingCtx.Accept(token, true)
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
		piece := s.model.TokenToPiece(token)

		seq.numPredicted++

		// if it's an end of sequence token, break
		if s.model.TokenIsEog(token) {
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece

			s.removeSequence(i, "stop")
			continue
		}

		seq.inputs = []input{{token: token}}

		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

		if ok, stop := findStop(sequence, seq.stop); ok {
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
			seq.pendingResponses, tokenTruncated = truncateStop(seq.pendingResponses, stop)
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

			s.removeSequence(i, "stop")
			continue
		}

		if containsStopSuffix(sequence, seq.stop) {
			continue
		}

		if incompleteUnicode(sequence) {
			continue
		}

		if !flushPending(seq) {
			s.removeSequence(i, "connection")
		}
	}
546
547

	return nil
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
}

// TODO (jmorganca): use structs from the api package to avoid duplication
// this way the api acts as a proxy instead of using a different api for the
// runner
type Options struct {
	api.Runner

	NumKeep          int      `json:"n_keep"`
	Seed             int      `json:"seed"`
	NumPredict       int      `json:"n_predict"`
	TopK             int      `json:"top_k"`
	TopP             float32  `json:"top_p"`
	MinP             float32  `json:"min_p"`
	TFSZ             float32  `json:"tfs_z"`
	TypicalP         float32  `json:"typical_p"`
	RepeatLastN      int      `json:"repeat_last_n"`
	Temperature      float32  `json:"temperature"`
	RepeatPenalty    float32  `json:"repeat_penalty"`
	PresencePenalty  float32  `json:"presence_penalty"`
	FrequencyPenalty float32  `json:"frequency_penalty"`
	Mirostat         int      `json:"mirostat"`
	MirostatTau      float32  `json:"mirostat_tau"`
	MirostatEta      float32  `json:"mirostat_eta"`
	PenalizeNewline  bool     `json:"penalize_nl"`
	Stop             []string `json:"stop"`
}

type ImageData struct {
577
578
579
	Data          []byte `json:"data"`
	ID            int    `json:"id"`
	AspectRatioID int    `json:"aspect_ratio_id"`
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
}

type CompletionRequest struct {
	Prompt      string      `json:"prompt"`
	Images      []ImageData `json:"image_data"`
	Grammar     string      `json:"grammar"`
	CachePrompt bool        `json:"cache_prompt"`

	Options
}

type Timings struct {
	PredictedN  int     `json:"predicted_n"`
	PredictedMS float64 `json:"predicted_ms"`
	PromptN     int     `json:"prompt_n"`
	PromptMS    float64 `json:"prompt_ms"`
}

type CompletionResponse struct {
	Content string `json:"content"`
	Stop    bool   `json:"stop"`

	Model        string  `json:"model,omitempty"`
	Prompt       string  `json:"prompt,omitempty"`
	StoppedLimit bool    `json:"stopped_limit,omitempty"`
	PredictedN   int     `json:"predicted_n,omitempty"`
	PredictedMS  float64 `json:"predicted_ms,omitempty"`
	PromptN      int     `json:"prompt_n,omitempty"`
	PromptMS     float64 `json:"prompt_ms,omitempty"`

	Timings Timings `json:"timings"`
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
	var req CompletionRequest
	req.Options = Options(api.DefaultOptions())
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

	var samplingParams llama.SamplingParams
	samplingParams.TopK = req.TopK
	samplingParams.TopP = req.TopP
	samplingParams.MinP = req.MinP
	samplingParams.TfsZ = req.TFSZ
	samplingParams.TypicalP = req.TypicalP
	samplingParams.Temp = req.Temperature
	samplingParams.RepeatLastN = req.RepeatLastN
	samplingParams.PenaltyRepeat = req.RepeatPenalty
	samplingParams.PenaltyFreq = req.FrequencyPenalty
	samplingParams.PenaltyPresent = req.PresencePenalty
	samplingParams.Mirostat = req.Mirostat
	samplingParams.MirostatTau = req.MirostatTau
	samplingParams.MirostatEta = req.MirostatEta
	samplingParams.PenalizeNl = req.PenalizeNewline
	samplingParams.Seed = uint32(req.Seed)
	samplingParams.Grammar = req.Grammar

	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
		numPredict:     req.NumPredict,
		stop:           req.Stop,
		numKeep:        req.NumKeep,
		samplingParams: &samplingParams,
		embedding:      false,
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

661
	// Ensure there is a place to put the sequence, released when removed from s.seqs
662
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
663
664
665
666
667
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
			slog.Error("Failed to acquire semaphore", "error", err)
		}
668
669
670
		return
	}

671
	s.mu.Lock()
672
	found := false
673
674
	for i, sq := range s.seqs {
		if sq == nil {
675
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
676
677
678
679
680
			if err != nil {
				s.mu.Unlock()
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
681

682
683
			seq.crossAttention = s.image.NeedCrossAttention(seq.cache.Inputs...)

684
685
			s.seqs[i] = seq
			s.cond.Signal()
686
			found = true
687
688
689
690
691
			break
		}
	}
	s.mu.Unlock()

692
693
694
695
696
	if !found {
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
				if err := json.NewEncoder(w).Encode(&CompletionResponse{
					Content: content,
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
				// Send the final response
				if err := json.NewEncoder(w).Encode(&CompletionResponse{
					Stop:         true,
					StoppedLimit: seq.doneReason == "limit",
					Timings: Timings{
						PromptN:     seq.numPromptInputs,
						PromptMS:    float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()),
						PredictedN:  seq.numDecoded,
						PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()),
					},
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

type EmbeddingRequest struct {
	Content     string `json:"content"`
	CachePrompt bool   `json:"cache_prompt"`
}

type EmbeddingResponse struct {
	Embedding []float32 `json:"embedding"`
}

func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
	var req EmbeddingRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
		return
	}

	w.Header().Set("Content-Type", "application/json")

	slog.Debug("embedding request", "content", req.Content)

	seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

760
	// Ensure there is a place to put the sequence, released when removed from s.seqs
761
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
762
763
764
765
766
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embeddings request due to client closing the connection")
		} else {
			slog.Error("Failed to acquire semaphore", "error", err)
		}
767
768
769
		return
	}

770
	s.mu.Lock()
771
	found := false
772
773
	for i, sq := range s.seqs {
		if sq == nil {
774
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
775
776
777
778
779
780
781
			if err != nil {
				s.mu.Unlock()
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
			s.seqs[i] = seq
			s.cond.Signal()
782
			found = true
783
784
785
786
787
			break
		}
	}
	s.mu.Unlock()

788
789
790
791
792
	if !found {
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
	embedding := <-seq.embedding

	if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
		Embedding: embedding,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

type HealthResponse struct {
	Status   string  `json:"status"`
	Progress float32 `json:"progress"`
}

type ServerStatus int

const (
	ServerStatusReady ServerStatus = iota
	ServerStatusLoadingModel
	ServerStatusError
)

func (s ServerStatus) ToString() string {
	switch s {
	case ServerStatusReady:
		return "ok"
	case ServerStatusLoadingModel:
		return "loading model"
	default:
		return "server error"
	}
}

func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
	if err := json.NewEncoder(w).Encode(&HealthResponse{
		Status:   s.status.ToString(),
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

836
837
838
839
840
841
842
843
844
845
846
type multiLPath []string

func (m *multiLPath) Set(value string) error {
	*m = append(*m, value)
	return nil
}

func (m *multiLPath) String() string {
	return strings.Join(*m, ", ")
}

847
848
849
func (s *Server) loadModel(
	params llama.ModelParams,
	mpath string,
850
	lpath multiLPath,
851
852
853
854
855
856
857
858
	ppath string,
	kvSize int,
	flashAttention bool,
	threads int,
	multiUserCache bool,
) {
	llama.BackendInit()

859
860
861
862
863
	var err error
	s.model, err = llama.LoadModelFromFile(mpath, params)
	if err != nil {
		panic(err)
	}
864
865

	ctxParams := llama.NewContextParams(kvSize, s.batchSize*s.parallel, s.parallel, threads, flashAttention)
866
867
868
869
	s.lc, err = llama.NewContextWithModel(s.model, ctxParams)
	if err != nil {
		panic(err)
	}
870

871
872
873
874
875
876
	if lpath.String() != "" {
		for _, path := range lpath {
			err := s.model.ApplyLoraFromFile(s.lc, path, 1.0, threads)
			if err != nil {
				panic(err)
			}
877
878
879
880
		}
	}

	if ppath != "" {
881
		var err error
882
		s.image, err = NewImageContext(s.lc, ppath)
883
884
885
		if err != nil {
			panic(err)
		}
886
887
	}

888
889
890
891
	s.cache, err = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
	if err != nil {
		panic(err)
	}
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

	s.status = ServerStatusReady
	s.ready.Done()
}

func main() {
	mpath := flag.String("model", "", "Path to model binary file")
	ppath := flag.String("mmproj", "", "Path to projector binary file")
	parallel := flag.Int("parallel", 1, "Number of sequences to handle simultaneously")
	batchSize := flag.Int("batch-size", 512, "Batch size")
	nGpuLayers := flag.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
	mainGpu := flag.Int("main-gpu", 0, "Main GPU")
	flashAttention := flag.Bool("flash-attn", false, "Enable flash attention")
	kvSize := flag.Int("ctx-size", 2048, "Context (or KV cache) size")
	port := flag.Int("port", 8080, "Port to expose the server on")
	threads := flag.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
	verbose := flag.Bool("verbose", false, "verbose output (default: disabled)")
	noMmap := flag.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
	mlock := flag.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
	tensorSplit := flag.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
	multiUserCache := flag.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
	requirements := flag.Bool("requirements", false, "print json requirement information")

915
916
917
	var lpaths multiLPath
	flag.Var(&lpaths, "lora", "Path to lora layer file (can be specified multiple times)")

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
	flag.Parse()
	if *requirements {
		printRequirements(os.Stdout)
		return
	}
	level := slog.LevelInfo
	if *verbose {
		level = slog.LevelDebug
	}
	handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
		Level:     level,
		AddSource: true,
		ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
			if attr.Key == slog.SourceKey {
				source := attr.Value.Any().(*slog.Source)
				source.File = filepath.Base(source.File)
			}
			return attr
		},
	})
	slog.SetDefault(slog.New(handler))
	slog.Info("starting go runner")
940
	slog.Info("system", "info", llama.PrintSystemInfo(), "threads", *threads)
941
942
943
944
945

	server := &Server{
		batchSize: *batchSize,
		parallel:  *parallel,
		seqs:      make([]*Sequence, *parallel),
946
		seqsSem:   semaphore.NewWeighted(int64(*parallel)),
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
		status:    ServerStatusLoadingModel,
	}

	var tensorSplitFloats []float32
	if *tensorSplit != "" {
		stringFloats := regexp.MustCompile(",").Split(*tensorSplit, -1)

		tensorSplitFloats = make([]float32, 0, len(stringFloats))
		for _, s := range stringFloats {
			f, _ := strconv.ParseFloat(s, 32)
			tensorSplitFloats = append(tensorSplitFloats, float32(f))
		}
	}

	params := llama.ModelParams{
		NumGpuLayers: *nGpuLayers,
		MainGpu:      *mainGpu,
964
		UseMmap:      !*noMmap && lpaths.String() == "",
965
966
967
968
969
970
971
972
		UseMlock:     *mlock,
		TensorSplit:  tensorSplitFloats,
		Progress: func(progress float32) {
			server.progress = progress
		},
	}

	server.ready.Add(1)
973
	go server.loadModel(params, *mpath, lpaths, *ppath, *kvSize, *flashAttention, *threads, *multiUserCache)
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003

	server.cond = sync.NewCond(&server.mu)

	ctx, cancel := context.WithCancel(context.Background())
	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
		return
	}
	defer listener.Close()

	mux := http.NewServeMux()
	mux.HandleFunc("/embedding", server.embeddings)
	mux.HandleFunc("/completion", server.completion)
	mux.HandleFunc("/health", server.health)

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
	}

	cancel()
}