runner.go 24.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
package main

import (
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
	"path/filepath"
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
21
	"unicode/utf8"
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

	"github.com/ollama/ollama/api"
	"github.com/ollama/ollama/llama"
)

// input is an element of the prompt to process, either
// a token or an image embedding (generated from a vision projector)
type input struct {
	token int

	// embed is an image embedding
	embed []float32
}

type Sequence struct {
	// number of inputs evaluated
	numPast int

	// batch index
	iBatch int

	// number of tokens predicted so far
	numPredicted int

	// prompt inputs left to evaluate
	inputs []input

	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

	samplingCtx *llama.SamplingContext

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
	numKeep int

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

	doneReason string

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
	numDecoded          int
	numPromptInputs     int
}

type NewSequenceParams struct {
	numPredict     int
	stop           []string
	numKeep        int
	samplingParams *llama.SamplingParams
	embedding      bool
}

func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequenceParams) (*Sequence, error) {
	s.ready.Wait()

	startTime := time.Now()

	inputs, err := s.inputs(prompt, images)
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
		params.numKeep = len(inputs)
	}

	if !params.embedding {
		// Subtracting 4 ensures that at least 1 input can be discarded during shift
		params.numKeep = min(params.numKeep, s.cache.numCtx-4)
		params.numKeep += s.bosToken
	} else {
		// Embeddings are 1 shot - just truncate to the context window, without ever shifting
		params.numKeep = min(params.numKeep, s.cache.numCtx)
	}

	// truncate to fit in context window
	if len(inputs) > s.cache.numCtx {
		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "numKeep", params.numKeep)
		newInputs := inputs[:params.numKeep]
		newInputs = append(newInputs, inputs[len(inputs)-s.cache.numCtx+params.numKeep:]...)
		inputs = newInputs
	}

	var sc *llama.SamplingContext
	if params.samplingParams != nil {
130
		sc = llama.NewSamplingContext(s.model, *params.samplingParams)
131
132
		for _, input := range inputs {
			if input.embed == nil {
133
				sc.Accept(input.token, false)
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
			}
		}
	}

	return &Sequence{
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
		samplingCtx:         sc,
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// generating image embeddings for each image
func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
	var inputs []input

	re := regexp.MustCompile(`\[img-(\d+)\]`)
	parts := re.Split(prompt, -1)
	matches := re.FindAllStringSubmatch(prompt, -1)

	for i, part := range parts {
		// text - tokenize
		if strings.TrimSpace(part) != "" {
			tokens, err := s.lc.Model().Tokenize(part, i == 0, true)
			if err != nil {
				return nil, err
			}

			for _, t := range tokens {
				inputs = append(inputs, input{token: t})
			}
		}

		// image - generate image embedding
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
				return nil, fmt.Errorf("invalid image index: %d", n)
			}

			hash := s.cache.HashImage(images[imageIndex].Data)

			// Vision models cannot be accessed concurrently
			s.clip.mu.Lock()
			embed, err := s.cache.FindImage(hash)
			if err != nil {
				embed = llama.NewLlavaImageEmbed(s.lc, s.clip.cc, images[imageIndex].Data)
				s.cache.AddImage(hash, embed)
			}
			s.clip.mu.Unlock()

			for _, e := range embed {
				inputs = append(inputs, input{embed: e})
			}
		}
	}

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
	if s.clip.cc != nil {
		var embed [][]float32

		if s.clip.cc.IsMllama && len(images) >= 1 {
			hash := s.cache.HashImage(images[0].Data)

			s.clip.mu.Lock()
			var err error
			embed, err = s.cache.FindImage(hash)
			if err != nil {
				embed = llama.NewMllamaImageEmbed(s.lc, s.clip.cc, images[0].Data, images[0].AspectRatioID)
				s.cache.AddImage(hash, embed)
			}
			s.clip.mu.Unlock()
		}
		s.mu.Lock()
		llama.MllamaSetCrossAttn(s.lc, s.clip.cc, embed)
		s.mu.Unlock()
	}

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
	return inputs, nil
}

type clip struct {
	cc *llama.ClipContext
	mu sync.Mutex
}

type Server struct {
	model *llama.Model
	lc    *llama.Context

	// required for image embeddings
	clip clip

	batchSize int

	// parallel is the number of parallel requests to handle
	parallel int

	// seqs is the list of parallel sequences being evaluated
	// TODO (jmorganca): this can probably be moved into run()
	seqs []*Sequence

	// KV cache
	cache *InputCache

	// does this model require a beginning of sequence token?
	bosToken int

	// next sequence for prompt processing to avoid starvation
	nextSeq int

	// is the server ready to process requests?
	ready sync.WaitGroup

	mu sync.Mutex

	cond *sync.Cond

	progress float32

	status ServerStatus
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func (s *Server) shiftContext(seq *Sequence) {
	numLeft := seq.numPast - seq.numKeep
	numDiscard := numLeft / 2

	slog.Debug("context limit hit - shifting", "limit", s.cache.numCtx, "numPast", seq.numPast,
		"numKeep", seq.numKeep, "numLeft", numLeft, "numDiscard", numDiscard)

	s.cache.ShiftCacheSlot(seq.cache, seq.numKeep, numDiscard, seq.numPast)

	seq.numPast -= numDiscard
}

func flushPending(seq *Sequence) bool {
297
298
299
300
301
302
303
304
305
306
307
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
308
309
	}

310
311
312
313
314
315
316
317
318
319
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
320
321
322
323
324
325
326
327
328
329
}

func (s *Server) removeSequence(seqIndex int, reason string) {
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
330
331
332
	if s.clip.cc != nil {
		llama.MllamaSetCrossAttn(s.lc, s.clip.cc, nil)
	}
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
	s.seqs[seqIndex] = nil
}

func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

	// logically these batches are used only within the context of processBatch
	// but it is better for performance to allocate them once here
	tokenBatch := llama.NewBatch(s.batchSize*len(s.seqs), 0, len(s.seqs))
	defer tokenBatch.Free()

	embedBatch := llama.NewBatch(s.batchSize*len(s.seqs), s.lc.Model().NEmbd(), len(s.seqs))
	defer embedBatch.Free()

	for {
		select {
		case <-ctx.Done():
			return
		default:
			s.processBatch(tokenBatch, embedBatch)
			tokenBatch.Clear()
			embedBatch.Clear()
		}
	}
}

// TODO (jmorganca): processBatch should be simplified, removing:
// * sampling
// * stop token checking
// * metrics
// these should instead be handled by the handlers
// it should only be responsible for accepting tokens or embeddings and
// processing batches as fast as possible
func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch) {
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

	var batch *llama.Batch

	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]

		if seq == nil {
			continue
		}

		// if past the num predict limit
		if seq.numPredict > 0 && seq.numPredicted > seq.numPredict {
			s.removeSequence(seqIdx, "limit")
			continue
		}

		if seq.numPast+len(seq.inputs) > s.cache.numCtx {
			s.shiftContext(seq)
		}

		var numInputsProcessed int
		for i, input := range seq.inputs {
			embedding := input.embed != nil

			// If we don't currently have a batch, use one of the correct type and
			// fill it up as much as possible across all sequences. If we encounter an
			// input of the opppsite type, stop for that sequence but then pick up from
			// there for the next batch, ensuring that we alternate types
			if batch == nil {
				if !embedding {
					batch = tokenBatch
				} else {
					batch = embedBatch
				}
			} else if embedding != batch.IsEmbedding() {
				s.nextSeq = seqIdx
				break
			}

			// todo: make this n_batch
			if i >= s.batchSize {
				break
			}

			batch.Add(input.token, input.embed, seq.numPast, []int{seq.cache.Id}, numInputsProcessed+1 == len(seq.inputs))
			seq.numPast++
			numInputsProcessed++
		}

		if numInputsProcessed > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.inputs[:numInputsProcessed]...)
			seq.inputs = seq.inputs[numInputsProcessed:]
			seq.iBatch = batch.NumTokens() - 1
		}
	}

	if batch == nil || batch.NumTokens() == 0 {
		return
	}

	err := s.lc.Decode(batch)
	if err != nil {
		slog.Error("failed to decode batch", "error", err)
		return
	}

	for i, seq := range s.seqs {
		if seq == nil {
			continue
		}

		// don't sample prompt processing
		if len(seq.inputs) != 0 {
			continue
		}

		seq.numDecoded += 1
		if seq.numDecoded == 1 {
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
			embed := s.lc.GetEmbeddingsSeq(i)
			if embed == nil {
				embed = s.lc.GetEmbeddingsIth(seq.iBatch)
			}

			seq.embedding <- embed
			s.removeSequence(i, "")
			continue
		}

		// sample a token
468
469
		token := seq.samplingCtx.Sample(s.lc, seq.iBatch)
		seq.samplingCtx.Accept(token, true)
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
		piece := s.model.TokenToPiece(token)

		seq.numPredicted++

		// if it's an end of sequence token, break
		if s.model.TokenIsEog(token) {
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece

			s.removeSequence(i, "stop")
			continue
		}

		seq.inputs = []input{{token: token}}

		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

		if ok, stop := findStop(sequence, seq.stop); ok {
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
			seq.pendingResponses, tokenTruncated = truncateStop(seq.pendingResponses, stop)
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

			s.removeSequence(i, "stop")
			continue
		}

		if containsStopSuffix(sequence, seq.stop) {
			continue
		}

		if incompleteUnicode(sequence) {
			continue
		}

		if !flushPending(seq) {
			s.removeSequence(i, "connection")
		}
	}
}

// TODO (jmorganca): use structs from the api package to avoid duplication
// this way the api acts as a proxy instead of using a different api for the
// runner
type Options struct {
	api.Runner

	NumKeep          int      `json:"n_keep"`
	Seed             int      `json:"seed"`
	NumPredict       int      `json:"n_predict"`
	TopK             int      `json:"top_k"`
	TopP             float32  `json:"top_p"`
	MinP             float32  `json:"min_p"`
	TFSZ             float32  `json:"tfs_z"`
	TypicalP         float32  `json:"typical_p"`
	RepeatLastN      int      `json:"repeat_last_n"`
	Temperature      float32  `json:"temperature"`
	RepeatPenalty    float32  `json:"repeat_penalty"`
	PresencePenalty  float32  `json:"presence_penalty"`
	FrequencyPenalty float32  `json:"frequency_penalty"`
	Mirostat         int      `json:"mirostat"`
	MirostatTau      float32  `json:"mirostat_tau"`
	MirostatEta      float32  `json:"mirostat_eta"`
	PenalizeNewline  bool     `json:"penalize_nl"`
	Stop             []string `json:"stop"`
}

type ImageData struct {
556
557
558
	Data          []byte `json:"data"`
	ID            int    `json:"id"`
	AspectRatioID int    `json:"aspect_ratio_id"`
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
}

type CompletionRequest struct {
	Prompt      string      `json:"prompt"`
	Images      []ImageData `json:"image_data"`
	Grammar     string      `json:"grammar"`
	CachePrompt bool        `json:"cache_prompt"`

	Options
}

type Timings struct {
	PredictedN  int     `json:"predicted_n"`
	PredictedMS float64 `json:"predicted_ms"`
	PromptN     int     `json:"prompt_n"`
	PromptMS    float64 `json:"prompt_ms"`
}

type CompletionResponse struct {
	Content string `json:"content"`
	Stop    bool   `json:"stop"`

	Model        string  `json:"model,omitempty"`
	Prompt       string  `json:"prompt,omitempty"`
	StoppedLimit bool    `json:"stopped_limit,omitempty"`
	PredictedN   int     `json:"predicted_n,omitempty"`
	PredictedMS  float64 `json:"predicted_ms,omitempty"`
	PromptN      int     `json:"prompt_n,omitempty"`
	PromptMS     float64 `json:"prompt_ms,omitempty"`

	Timings Timings `json:"timings"`
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
	var req CompletionRequest
	req.Options = Options(api.DefaultOptions())
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

	var samplingParams llama.SamplingParams
	samplingParams.TopK = req.TopK
	samplingParams.TopP = req.TopP
	samplingParams.MinP = req.MinP
	samplingParams.TfsZ = req.TFSZ
	samplingParams.TypicalP = req.TypicalP
	samplingParams.Temp = req.Temperature
	samplingParams.RepeatLastN = req.RepeatLastN
	samplingParams.PenaltyRepeat = req.RepeatPenalty
	samplingParams.PenaltyFreq = req.FrequencyPenalty
	samplingParams.PenaltyPresent = req.PresencePenalty
	samplingParams.Mirostat = req.Mirostat
	samplingParams.MirostatTau = req.MirostatTau
	samplingParams.MirostatEta = req.MirostatEta
	samplingParams.PenalizeNl = req.PenalizeNewline
	samplingParams.Seed = uint32(req.Seed)
	samplingParams.Grammar = req.Grammar

	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
		numPredict:     req.NumPredict,
		stop:           req.Stop,
		numKeep:        req.NumKeep,
		samplingParams: &samplingParams,
		embedding:      false,
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

	// TODO (jmorganca): add to sequence queue instead of
	// failing if a slot isn't available
	s.mu.Lock()
	for i, sq := range s.seqs {
		if sq == nil {
			seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
			if err != nil {
				s.mu.Unlock()
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
			s.seqs[i] = seq
			s.cond.Signal()
			break
		}
	}
	s.mu.Unlock()

	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
				if err := json.NewEncoder(w).Encode(&CompletionResponse{
					Content: content,
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
				// Send the final response
				if err := json.NewEncoder(w).Encode(&CompletionResponse{
					Stop:         true,
					StoppedLimit: seq.doneReason == "limit",
					Timings: Timings{
						PromptN:     seq.numPromptInputs,
						PromptMS:    float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()),
						PredictedN:  seq.numDecoded,
						PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()),
					},
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

type EmbeddingRequest struct {
	Content     string `json:"content"`
	CachePrompt bool   `json:"cache_prompt"`
}

type EmbeddingResponse struct {
	Embedding []float32 `json:"embedding"`
}

func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
	var req EmbeddingRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
		return
	}

	w.Header().Set("Content-Type", "application/json")

	slog.Debug("embedding request", "content", req.Content)

	seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

	// TODO (jessegross): Wait for a free slot instead of failing and blocking forever
	s.mu.Lock()
	for i, sq := range s.seqs {
		if sq == nil {
			seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
			if err != nil {
				s.mu.Unlock()
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
			s.seqs[i] = seq
			s.cond.Signal()
			break
		}
	}
	s.mu.Unlock()

	embedding := <-seq.embedding

	if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
		Embedding: embedding,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

type HealthResponse struct {
	Status   string  `json:"status"`
	Progress float32 `json:"progress"`
}

type ServerStatus int

const (
	ServerStatusReady ServerStatus = iota
	ServerStatusLoadingModel
	ServerStatusError
)

func (s ServerStatus) ToString() string {
	switch s {
	case ServerStatusReady:
		return "ok"
	case ServerStatusLoadingModel:
		return "loading model"
	default:
		return "server error"
	}
}

func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
	if err := json.NewEncoder(w).Encode(&HealthResponse{
		Status:   s.status.ToString(),
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

func (s *Server) loadModel(
	params llama.ModelParams,
	mpath string,
	lpath string,
	ppath string,
	kvSize int,
	flashAttention bool,
	threads int,
	multiUserCache bool,
) {
	llama.BackendInit()

793
794
795
796
797
	var err error
	s.model, err = llama.LoadModelFromFile(mpath, params)
	if err != nil {
		panic(err)
	}
798
799

	ctxParams := llama.NewContextParams(kvSize, s.batchSize*s.parallel, s.parallel, threads, flashAttention)
800
801
802
803
	s.lc, err = llama.NewContextWithModel(s.model, ctxParams)
	if err != nil {
		panic(err)
	}
804
805
806
807
808
809
810
811
812
813
814
815
816

	if lpath != "" {
		err := s.model.ApplyLoraFromFile(s.lc, lpath, 1.0, threads)
		if err != nil {
			panic(err)
		}
	}

	if s.model.AddBOSToken() {
		s.bosToken = 1
	}

	if ppath != "" {
817
818
819
820
821
		var err error
		s.clip.cc, err = llama.NewClipContext(ppath)
		if err != nil {
			panic(err)
		}
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
	}

	s.cache = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)

	s.status = ServerStatusReady
	s.ready.Done()
}

func main() {
	mpath := flag.String("model", "", "Path to model binary file")
	ppath := flag.String("mmproj", "", "Path to projector binary file")
	parallel := flag.Int("parallel", 1, "Number of sequences to handle simultaneously")
	batchSize := flag.Int("batch-size", 512, "Batch size")
	nGpuLayers := flag.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
	mainGpu := flag.Int("main-gpu", 0, "Main GPU")
	flashAttention := flag.Bool("flash-attn", false, "Enable flash attention")
	kvSize := flag.Int("ctx-size", 2048, "Context (or KV cache) size")
	lpath := flag.String("lora", "", "Path to lora layer file")
	port := flag.Int("port", 8080, "Port to expose the server on")
	threads := flag.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
	verbose := flag.Bool("verbose", false, "verbose output (default: disabled)")
	noMmap := flag.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
	mlock := flag.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
	tensorSplit := flag.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
	multiUserCache := flag.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
	// Expose requirements as a JSON output to stdout
	requirements := flag.Bool("requirements", false, "print json requirement information")

	// These are either ignored by llama.cpp or have no significance to us
	_ = flag.Bool("embedding", false, "enable embedding vector output (default: disabled)")
	_ = flag.Bool("log-disable", false, "disables logging to a file")
	_ = flag.Bool("memory-f32", false, "use f32 instead of f16 for memory key+value (default: disabled) not recommended: doubles context memory required and no measurable increase in quality")

	flag.Parse()
	if *requirements {
		printRequirements(os.Stdout)
		return
	}
	level := slog.LevelInfo
	if *verbose {
		level = slog.LevelDebug
	}
	handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
		Level:     level,
		AddSource: true,
		ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
			if attr.Key == slog.SourceKey {
				source := attr.Value.Any().(*slog.Source)
				source.File = filepath.Base(source.File)
			}
			return attr
		},
	})
	slog.SetDefault(slog.New(handler))
	slog.Info("starting go runner")
	slog.Debug("system info", "cpu", llama.PrintSystemInfo(), "threads", *threads)

	server := &Server{
		batchSize: *batchSize,
		parallel:  *parallel,
		seqs:      make([]*Sequence, *parallel),
		status:    ServerStatusLoadingModel,
	}

	var tensorSplitFloats []float32
	if *tensorSplit != "" {
		stringFloats := regexp.MustCompile(",").Split(*tensorSplit, -1)

		tensorSplitFloats = make([]float32, 0, len(stringFloats))
		for _, s := range stringFloats {
			f, _ := strconv.ParseFloat(s, 32)
			tensorSplitFloats = append(tensorSplitFloats, float32(f))
		}
	}

	params := llama.ModelParams{
		NumGpuLayers: *nGpuLayers,
		MainGpu:      *mainGpu,
		UseMmap:      !*noMmap && *lpath == "",
		UseMlock:     *mlock,
		TensorSplit:  tensorSplitFloats,
		Progress: func(progress float32) {
			server.progress = progress
		},
	}

	server.ready.Add(1)
	go server.loadModel(params, *mpath, *lpath, *ppath, *kvSize, *flashAttention, *threads, *multiUserCache)

	server.cond = sync.NewCond(&server.mu)

	ctx, cancel := context.WithCancel(context.Background())
	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
		return
	}
	defer listener.Close()

	mux := http.NewServeMux()
	mux.HandleFunc("/embedding", server.embeddings)
	mux.HandleFunc("/completion", server.completion)
	mux.HandleFunc("/health", server.health)

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
	}

	cancel()
}