"tests/models/autoencoders/test_models_vq.py" did not exist on "51843fd7d043428b5ef3bb77cc683e5339b2d95e"
llama.go 17.8 KB
Newer Older
1
2
3
4
5
package llama

/*
#cgo CFLAGS: -O2 -std=c11 -DGGML_BUILD=1 -DNDEBUG -DLOG_DISABLE_LOGS -DGGML_USE_LLAMAFILE
#cgo CXXFLAGS: -O2 -std=c++11 -DGGML_BUILD=1 -DNDEBUG -DLOG_DISABLE_LOGS -DGGML_USE_LLAMAFILE
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#cgo amd64,avx CFLAGS: -mavx
#cgo amd64,avx CXXFLAGS: -mavx
#cgo amd64,avx2 CFLAGS: -mavx2 -mfma
#cgo amd64,avx2 CXXFLAGS: -mavx2 -mfma
#cgo amd64,f16c CFLAGS: -mf16c
#cgo amd64,f16c CXXFLAGS: -mf16c
#cgo amd64,fma CFLAGS: -mfma
#cgo amd64,fma CXXFLAGS: -mfma
#cgo avx CFLAGS: -mavx
#cgo avx CXXFLAGS: -mavx
#cgo avx2 CFLAGS: -mavx2 -mfma -mf16c
#cgo avx2 CXXFLAGS: -mavx2 -mfma -mf16c
#cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda_v11 LDFLAGS: -lggml_cuda_v11 -L/usr/local/cuda-11/lib64
#cgo cuda_v12 LDFLAGS: -lggml_cuda_v12 -L/usr/local/cuda-12/lib64
24
25
26
#cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
#cgo darwin,amd64 CXXFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
#cgo darwin,amd64 LDFLAGS: -framework Foundation
27
28
29
#cgo darwin,amd64,avx2 CFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
#cgo darwin,amd64,avx2 CXXFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
#cgo darwin,amd64,avx2 LDFLAGS: -framework Accelerate
30
31
32
#cgo darwin,arm64 CFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 -DGGML_USE_BLAS
#cgo darwin,arm64 CXXFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 -DGGML_USE_BLAS
#cgo darwin,arm64 LDFLAGS: -framework Foundation -framework Metal -framework MetalKit -framework Accelerate
33
34
35
#cgo linux CFLAGS: -D_GNU_SOURCE
#cgo linux CXXFLAGS: -D_GNU_SOURCE
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
36
37
38
39
40
41
42
43
44
45
46
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
#cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
#cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
#cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/Linux/arm64
#cgo linux,arm64,sve CFLAGS: -march=armv8.6-a+sve
#cgo linux,arm64,sve CXXFLAGS: -march=armv8.6-a+sve
#cgo linux,cuda LDFLAGS: -lcuda -lcudart -lcublas -lcublasLt -lpthread -ldl -lrt -lresolv
#cgo linux,rocm LDFLAGS: -L/opt/rocm/lib -lpthread -ldl -lrt -lresolv
#cgo rocm CFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo rocm CXXFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo rocm LDFLAGS: -L${SRCDIR} -lggml_rocm -lhipblas -lamdhip64 -lrocblas
47
48
#cgo windows CFLAGS: -Wno-discarded-qualifiers -D_WIN32_WINNT=0x602
#cgo windows CXXFLAGS: -D_WIN32_WINNT=0x602
49
#cgo windows LDFLAGS: -lmsvcrt
50
51
#cgo windows LDFLAGS: -lmsvcrt -static-libstdc++ -static-libgcc -static
#cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/Windows/amd64
52
53
54
55
56
#cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/Windows/amd64
#cgo windows,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
#cgo windows,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
#cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/Windows/arm64
#cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/Windows/arm64
57
58
59
60
61
62
#cgo windows,cuda LDFLAGS: -lcuda -lcudart -lcublas -lcublasLt
#cgo windows,rocm LDFLAGS: -lggml_rocm -lhipblas -lamdhip64 -lrocblas

#include <stdlib.h>
#include "llama.h"
#include "clip.h"
63
#include "ggml.h"
64
#include "llava.h"
65
#include "mllama.h"
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#include "sampling_ext.h"

bool llamaProgressCallback(float progress, void *user_data);
*/
import "C"

import (
	_ "embed"
	"errors"
	"fmt"
	"runtime"
	"runtime/cgo"
	"strings"
	"unsafe"
)

var CpuFeatures = ""

func BackendInit() {
	C.llama_backend_init()
}

func PrintSystemInfo() string {
	return C.GoString(C.llama_print_system_info())
}

type ContextParams struct {
	c C.struct_llama_context_params
}

func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool) ContextParams {
	params := C.llama_context_default_params()
	params.n_ctx = C.uint(numCtx)
	params.n_batch = C.uint(batchSize)
	params.n_seq_max = C.uint(numSeqMax)
	params.n_threads = C.int(threads)
	params.n_threads_batch = params.n_threads
	params.embeddings = C.bool(true)
	params.flash_attn = C.bool(flashAttention)
	return ContextParams{c: params}
}

type Context struct {
	c          *C.struct_llama_context
	numThreads int
}

func (c *Context) KvCacheClear() {
	C.llama_kv_cache_clear(c.c)
}

func (c *Context) Decode(batch *Batch) error {
	// Positive return values does not mean a fatal error, but rather a warning.
	//   0 - success
	//   1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
	// < 0 - error
	code := int(C.llama_decode(c.c, batch.c))

	if code < 0 {
		return fmt.Errorf("llama_decode failed with code %d", code)
	}

	if code > 0 {
		return fmt.Errorf("could not find a KV slot for the batch - try reducing the size of the batch or increase the context. code: %d", code)
	}

	return nil
}

func (c *Context) Model() *Model {
	return &Model{c: C.llama_get_model(c.c)}
}

func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
	C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
}

func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
	return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
}

func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
	C.llama_kv_cache_seq_cp(c.c, C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
}

// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
	embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
	if embeddings == nil {
		return nil
	}

	return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
}

func (c *Context) GetEmbeddingsIth(i int) []float32 {
162
163
164
165
166
167
	embeddings := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
	if embeddings == nil {
		return nil
	}

	return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
}

type ModelParams struct {
	NumGpuLayers int
	MainGpu      int
	UseMmap      bool
	UseMlock     bool
	TensorSplit  []float32
	Progress     func(float32)
	VocabOnly    bool
}

//export llamaProgressCallback
func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
	handle := *(*cgo.Handle)(userData)
	callback := handle.Value().(func(float32))
	callback(float32(progress))
	return true
}

188
func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
	cparams := C.llama_model_default_params()
	cparams.n_gpu_layers = C.int(params.NumGpuLayers)
	cparams.main_gpu = C.int32_t(params.MainGpu)
	cparams.use_mmap = C.bool(params.UseMmap)
	cparams.use_mlock = C.bool(params.UseMlock)
	cparams.vocab_only = C.bool(params.VocabOnly)

	if len(params.TensorSplit) > 0 {
		tensorSplitData := &params.TensorSplit[0]

		var tensorSplitPin runtime.Pinner
		tensorSplitPin.Pin(tensorSplitData)
		defer tensorSplitPin.Unpin()

		cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
	}

	if params.Progress != nil {
		handle := cgo.NewHandle(params.Progress)
		defer handle.Delete()

		var handlePin runtime.Pinner
		handlePin.Pin(&handle)
		defer handlePin.Unpin()

		cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
		cparams.progress_callback_user_data = unsafe.Pointer(&handle)
	}

218
219
220
221
222
223
	m := Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
	if m.c == (*C.struct_llama_model)(C.NULL) {
		return nil, fmt.Errorf("unable to load model: %s", modelPath)
	}

	return &m, nil
224
225
226
227
228
229
}

func FreeModel(model *Model) {
	C.llama_free_model(model.c)
}

230
231
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
	c := Context{
232
233
234
		c:          C.llama_new_context_with_model(model.c, params.c),
		numThreads: int(params.c.n_threads),
	}
235
236
237
238
239
	if c.c == (*C.struct_llama_context)(C.NULL) {
		return nil, errors.New("unable to create llama context")
	}

	return &c, nil
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
}

func (m *Model) NumVocab() int {
	return int(C.llama_n_vocab(m.c))
}

func (m *Model) TokenIsEog(token int) bool {
	return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
}

func (m *Model) AddBOSToken() bool {
	return bool(C.llama_add_bos_token(m.c))
}

func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
	cLoraPath := C.CString(loraPath)
	defer C.free(unsafe.Pointer(cLoraPath))

	loraAdapter := C.llama_lora_adapter_init(m.c, cLoraPath)

	err := -1
	if loraAdapter != nil {
		err = int(C.llama_lora_adapter_set(context.c, loraAdapter, C.float(scale)))
	}
	if err != 0 {
		return errors.New("error applying lora from file")
	}

	return nil
}

type Batch struct {
	c         C.struct_llama_batch
	batchSize int
	embedSize int
}

// Creates a new batch for either word tokens if embed is 0 or
// image embeddings if embed is specified. Batches cannot contain
// both types at the same time
func NewBatch(nTokens int, embed int, maxSeq int) *Batch {
	return &Batch{
		c:         C.llama_batch_init(C.int(nTokens), C.int(embed), C.int(maxSeq)),
		batchSize: nTokens,
		embedSize: embed,
	}
}

func (b *Batch) NumTokens() int {
	return int(b.c.n_tokens)
}

func (b *Batch) IsEmbedding() bool {
	return b.embedSize != 0
}

// Add adds either a token or an image embedding to the batch depending on the type
// when the batch was initialized. The other argument will be ignored. Adds to the
// batch with the given position for the given sequence ids, and optionally instructs
// to include logits.
func (b *Batch) Add(token int, embed []float32, pos int, seqIds []int, logits bool) {
	if !b.IsEmbedding() {
		unsafe.Slice(b.c.token, b.batchSize)[b.c.n_tokens] = C.llama_token(token)
	} else {
		copy(unsafe.Slice((*float32)(b.c.embd), b.batchSize*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
	}
	unsafe.Slice(b.c.pos, b.batchSize)[b.c.n_tokens] = C.llama_pos(pos)
	unsafe.Slice(b.c.n_seq_id, b.batchSize)[b.c.n_tokens] = C.int(len(seqIds))

	for i, s := range seqIds {
		unsafe.Slice((unsafe.Slice(b.c.seq_id, b.batchSize)[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
	}

	if logits {
		unsafe.Slice(b.c.logits, b.batchSize)[b.c.n_tokens] = 1
	}

	b.c.n_tokens += 1
}

func (b *Batch) Clear() {
	b.c.n_tokens = 0
}

func (b *Batch) Free() {
	b.batchSize = 0
	C.llama_batch_free(b.c)
}

type Model struct {
	c *C.struct_llama_model
}

func (m *Model) TokenToPiece(token int) string {
	tokenLen := 12
	buf := make([]byte, tokenLen)
	tokenLen = int(C.llama_token_to_piece(
		m.c,
		C.int32_t(token),
		(*C.char)(unsafe.Pointer(&buf[0])),
		C.int32_t(tokenLen),
		C.int32_t(0),
		C.bool(true),
	))
	if tokenLen < 0 {
		tokenLen = -tokenLen

		buf = make([]byte, tokenLen)
		C.llama_token_to_piece(
			m.c,
			C.int32_t(token),
			(*C.char)(unsafe.Pointer(&buf[0])),
			C.int32_t(tokenLen),
			C.int32_t(0),
			C.bool(true),
		)
	}
	return strings.TrimRight(string(buf), "\x00")
}

func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
	maxTokens := len(text) + 2
	cTokens := make([]C.llama_token, maxTokens)
	cText := C.CString(text)
	defer C.free(unsafe.Pointer(cText))

	result := C.llama_tokenize(
		m.c,
		cText,
		C.int32_t(len(text)),
		&cTokens[0],
		C.int32_t(maxTokens),
		C.bool(addSpecial),
		C.bool(parseSpecial),
	)

	// if the result is negative, reallocate and retry with the correct buffer size
	if result < 0 {
		maxTokens = int(-result)
		cTokens = make([]C.llama_token, maxTokens)
		result = C.llama_tokenize(
			m.c,
			cText,
			C.int32_t(len(text)),
			&cTokens[0],
			C.int32_t(maxTokens),
			C.bool(addSpecial),
			C.bool(parseSpecial),
		)
		if result < 0 {
			return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
		}
	}

	tokens := make([]int, result)
	for i := range result {
		tokens[i] = int(cTokens[i])
	}

	return tokens, nil
}

func (m *Model) NEmbd() int {
	return int(C.llama_n_embd(m.c))
}

func Quantize(infile, outfile string, ftype uint32) error {
	cinfile := C.CString(infile)
	defer C.free(unsafe.Pointer(cinfile))

	coutfile := C.CString(outfile)
	defer C.free(unsafe.Pointer(coutfile))

	params := C.llama_model_quantize_default_params()
	params.nthread = -1
	params.ftype = ftype

	if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
		return fmt.Errorf("llama_model_quantize: %d", rc)
	}

	return nil
}

// llava
type ClipContext struct {
426
427
428
429
430
	c        *C.struct_clip_ctx
	m        *C.struct_mllama_ctx
	IsMllama bool
	embedPin runtime.Pinner
	pinned   bool
431
432
}

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
func getVisionArch(mp *C.char) (string, error) {
	gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
	if gguf_ctx == nil {
		return "", errors.New("unable to load vision projector")
	}
	defer C.gguf_free(gguf_ctx)

	arch_index := C.gguf_find_key(gguf_ctx, C.CString("general.architecture"))
	if int(arch_index) < 0 {
		return "", errors.New("unknown vision model architecture")
	}

	arch := C.gguf_get_val_str(gguf_ctx, arch_index)

	return C.GoString(arch), nil
}

func NewClipContext(modelPath string) (*ClipContext, error) {
451
452
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

	arch, err := getVisionArch(mp)
	if err != nil {
		return nil, err
	}

	var cc ClipContext
	if arch == "clip" {
		cc.c = C.clip_model_load(mp, 1)
	} else if arch == "mllama" {
		cc.m = C.mllama_model_load(mp, 1)
		cc.IsMllama = true
	} else {
		return nil, fmt.Errorf("unknown vision model architecture: %s", arch)
	}

	// XXX: check embedding size?
	return &cc, nil
471
472
473
}

func (c *ClipContext) Free() {
474
475
476
477
478
479
	if c.c != nil {
		C.clip_free(c.c)
	}
	if c.m != nil {
		C.mllama_free(c.m)
	}
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
}

func NewLlavaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []byte) [][]float32 {
	c := C.llava_image_embed_make_with_bytes(clipContext.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))

	numTokens := int(c.n_image_pos)
	numEmbed := llamaContext.Model().NEmbd()

	s := unsafe.Slice((*float32)(c.embed), numEmbed*numTokens)

	embed := make([][]float32, numTokens)
	rows := make([]float32, len(s))
	copy(rows, s)

	for i := range embed {
		embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
	}

	C.llava_image_embed_free(c)

	return embed
}

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
func NewMllamaImageEmbed(llamaContext *Context, clipContext *ClipContext, data []byte, aspectRatioId int) [][]float32 {
	img := C.mllama_image_init()
	defer C.mllama_image_free(img)

	C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img)

	numTokens := int(C.mllama_n_positions(clipContext.m) * C.mllama_n_tiles(clipContext.m))
	numEmbed := llamaContext.Model().NEmbd()

	rows := make([]float32, numEmbed*numTokens)
	C.mllama_image_encode(clipContext.m, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0])))

	embed := make([][]float32, numTokens)
	for i := range embed {
		embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
	}

	return embed
}

// This really needs to be set on a batch instead
func MllamaSetCrossAttn(llamaContext *Context, clipContext *ClipContext, embed [][]float32) {
	if embed != nil {
		if clipContext.pinned {
			panic("Cross attention state already pinned")
		}

		embedData := &embed[0][0]
		clipContext.embedPin.Pin(embedData)
		clipContext.pinned = true

		C.llama_set_cross_attn_state(llamaContext.c, (*C.float)(unsafe.Pointer(embedData)))
	} else {
		C.llama_set_cross_attn_state(llamaContext.c, (*C.float)(C.NULL))

		if clipContext.pinned {
			clipContext.embedPin.Unpin()
			clipContext.pinned = false
		}
	}
}

545
546
547
// sampling
// TODO: this is a temporary wrapper to allow calling C++ code from CGo
type SamplingContext struct {
548
	c *C.struct_gpt_sampler
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
}

type SamplingParams struct {
	TopK           int
	TopP           float32
	MinP           float32
	TfsZ           float32
	TypicalP       float32
	Temp           float32
	RepeatLastN    int
	PenaltyRepeat  float32
	PenaltyFreq    float32
	PenaltyPresent float32
	Mirostat       int
	MirostatTau    float32
	MirostatEta    float32
	PenalizeNl     bool
	Seed           uint32
	Grammar        string
}

570
571
func NewSamplingContext(model *Model, params SamplingParams) *SamplingContext {
	var cparams C.struct_gpt_sampler_cparams
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
	cparams.top_k = C.int32_t(params.TopK)
	cparams.top_p = C.float(params.TopP)
	cparams.min_p = C.float(params.MinP)
	cparams.tfs_z = C.float(params.TfsZ)
	cparams.typical_p = C.float(params.TypicalP)
	cparams.temp = C.float(params.Temp)
	cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
	cparams.penalty_repeat = C.float(params.PenaltyRepeat)
	cparams.penalty_freq = C.float(params.PenaltyFreq)
	cparams.penalty_present = C.float(params.PenaltyFreq)
	cparams.mirostat = C.int32_t(params.Mirostat)
	cparams.mirostat_tau = C.float(params.MirostatTau)
	cparams.mirostat_eta = C.float(params.MirostatEta)
	cparams.penalize_nl = C.bool(params.PenalizeNl)
	cparams.seed = C.uint32_t(params.Seed)

	grammar := C.CString(params.Grammar)
	defer C.free(unsafe.Pointer(grammar))

	cparams.grammar = grammar
592
593
	context := &SamplingContext{c: C.gpt_sampler_cinit(model.c, &cparams)}
	runtime.SetFinalizer(context, func(s *SamplingContext) { C.gpt_sampler_cfree(s.c) })
594
595
596
597
598

	return context
}

func (s *SamplingContext) Reset() {
599
	C.gpt_sampler_creset(s.c)
600
601
}

602
603
func (s *SamplingContext) Sample(llamaContext *Context, idx int) int {
	return int(C.gpt_sampler_csample(s.c, llamaContext.c, C.int(idx)))
604
605
}

606
607
func (s *SamplingContext) Accept(id int, applyGrammar bool) {
	C.gpt_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar))
608
}